Information on Result #706139

Linear OA(437, 255, F4, 13) (dual of [255, 218, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(437, 146, F4, 2, 13) (dual of [(146, 2), 255, 14]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(437, 146, F4, 3, 13) (dual of [(146, 3), 401, 14]-NRT-code) [i]
3Digital (24, 37, 146)-net over F4 [i]
4Linear OA(457, 287, F4, 17) (dual of [287, 230, 18]-code) [i]Construction XX with Cyclic Codes
5Linear OA(447, 269, F4, 15) (dual of [269, 222, 16]-code) [i]
6Linear OA(456, 282, F4, 17) (dual of [282, 226, 18]-code) [i]
7Linear OA(462, 287, F4, 18) (dual of [287, 225, 19]-code) [i]
8Linear OA(454, 276, F4, 17) (dual of [276, 222, 18]-code) [i]
9Linear OA(461, 283, F4, 18) (dual of [283, 222, 19]-code) [i]
10Linear OA(460, 281, F4, 18) (dual of [281, 221, 19]-code) [i]
11Linear OA(445, 263, F4, 15) (dual of [263, 218, 16]-code) [i]
12Linear OA(450, 268, F4, 16) (dual of [268, 218, 17]-code) [i]
13Linear OA(464, 282, F4, 19) (dual of [282, 218, 20]-code) [i]
14Linear OA(463, 280, F4, 19) (dual of [280, 217, 20]-code) [i]
15Linear OA(468, 285, F4, 20) (dual of [285, 217, 21]-code) [i]
16Linear OA(469, 287, F4, 21) (dual of [287, 218, 22]-code) [i]
17Linear OOA(437, 85, F4, 3, 13) (dual of [(85, 3), 218, 14]-NRT-code) [i]OOA Folding