Information on Result #715456

Linear OA(862, 521, F8, 23) (dual of [521, 459, 24]-code), using construction XX applied to C1 = C([509,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([509,20]) based on
  1. linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,19}, and designed minimum distance d ≥ |I|+1 = 23 [i]
  2. linear OA(855, 511, F8, 21) (dual of [511, 456, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
  3. linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
  4. linear OA(852, 511, F8, 20) (dual of [511, 459, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
  5. linear OA(81, 7, F8, 1) (dual of [7, 6, 2]-code), using
  6. linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(863, 531, F8, 23) (dual of [531, 468, 24]-code) [i]VarÅ¡amov–Edel Lengthening
2Linear OA(864, 564, F8, 23) (dual of [564, 500, 24]-code) [i]
3Linear OA(865, 614, F8, 23) (dual of [614, 549, 24]-code) [i]