Information on Result #715533
Linear OA(864, 517, F8, 24) (dual of [517, 453, 25]-code), using construction XX applied to C1 = C([510,21]), C2 = C([0,22]), C3 = C1 + C2 = C([0,21]), and C∩ = C1 ∩ C2 = C([510,22]) based on
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,21}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(861, 511, F8, 23) (dual of [511, 450, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(864, 511, F8, 24) (dual of [511, 447, 25]-code), using the primitive BCH-code C(I) with length 511 = 83−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(858, 511, F8, 22) (dual of [511, 453, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 83−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(80, s, F8, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(80, 3, F8, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(865, 523, F8, 24) (dual of [523, 458, 25]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(866, 545, F8, 24) (dual of [545, 479, 25]-code) | [i] | ||
3 | Linear OOA(864, 258, F8, 2, 24) (dual of [(258, 2), 452, 25]-NRT-code) | [i] | OOA Folding |