Information on Result #721801
Linear OA(1671, 255, F16, 40) (dual of [255, 184, 41]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,39], and designed minimum distance d ≥ |I|+1 = 41
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(1673, 259, F16, 41) (dual of [259, 186, 42]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(1676, 262, F16, 42) (dual of [262, 186, 43]-code) | [i] | ✔ | |
3 | Linear OA(1691, 283, F16, 46) (dual of [283, 192, 47]-code) | [i] | ✔ | |
4 | Linear OA(1679, 265, F16, 43) (dual of [265, 186, 44]-code) | [i] | ✔ | |
5 | Linear OA(1690, 280, F16, 46) (dual of [280, 190, 47]-code) | [i] | ✔ | |
6 | Linear OA(1682, 268, F16, 44) (dual of [268, 186, 45]-code) | [i] | ✔ | |
7 | Linear OA(1689, 277, F16, 46) (dual of [277, 188, 47]-code) | [i] | ✔ | |
8 | Linear OA(1685, 271, F16, 45) (dual of [271, 186, 46]-code) | [i] | ✔ | |
9 | Linear OA(1688, 274, F16, 46) (dual of [274, 186, 47]-code) | [i] | ✔ | |
10 | Linear OA(1692, 278, F16, 47) (dual of [278, 186, 48]-code) | [i] | ✔ | |
11 | Linear OA(1695, 281, F16, 48) (dual of [281, 186, 49]-code) | [i] | ✔ | |
12 | Linear OA(1675, 259, F16, 42) (dual of [259, 184, 43]-code) | [i] | ✔ | |
13 | Linear OA(1681, 265, F16, 44) (dual of [265, 184, 45]-code) | [i] | ✔ | |
14 | Linear OA(1687, 271, F16, 46) (dual of [271, 184, 47]-code) | [i] | ✔ | |
15 | Linear OA(1694, 278, F16, 48) (dual of [278, 184, 49]-code) | [i] | ✔ | |
16 | Linear OA(1693, 277, F16, 48) (dual of [277, 184, 49]-code) | [i] | ✔ |