Information on Result #721839
Linear OA(1690, 255, F16, 53) (dual of [255, 165, 54]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 162−1, defining interval I = [0,52], and designed minimum distance d ≥ |I|+1 = 54
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(16103, 287, F16, 53) (dual of [287, 184, 54]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(16102, 284, F16, 53) (dual of [284, 182, 54]-code) | [i] | ✔ | |
3 | Linear OA(16101, 282, F16, 53) (dual of [282, 181, 54]-code) | [i] | ✔ | |
4 | Linear OA(16100, 280, F16, 53) (dual of [280, 180, 54]-code) | [i] | ✔ | |
5 | Linear OA(1699, 277, F16, 53) (dual of [277, 178, 54]-code) | [i] | ✔ | |
6 | Linear OA(1698, 275, F16, 53) (dual of [275, 177, 54]-code) | [i] | ✔ | |
7 | Linear OA(1697, 273, F16, 53) (dual of [273, 176, 54]-code) | [i] | ✔ | |
8 | Linear OA(1696, 270, F16, 53) (dual of [270, 174, 54]-code) | [i] | ✔ | |
9 | Linear OA(1695, 267, F16, 53) (dual of [267, 172, 54]-code) | [i] | ✔ | |
10 | Linear OA(1694, 264, F16, 53) (dual of [264, 170, 54]-code) | [i] | ✔ | |
11 | Linear OA(1692, 259, F16, 54) (dual of [259, 167, 55]-code) | [i] | ✔ | |
12 | Linear OA(1695, 262, F16, 55) (dual of [262, 167, 56]-code) | [i] | ✔ | |
13 | Linear OA(1698, 265, F16, 56) (dual of [265, 167, 57]-code) | [i] | ✔ | |
14 | Linear OA(16101, 268, F16, 57) (dual of [268, 167, 58]-code) | [i] | ✔ | |
15 | Linear OA(16108, 276, F16, 59) (dual of [276, 168, 60]-code) | [i] | ✔ | |
16 | Linear OA(16104, 271, F16, 58) (dual of [271, 167, 59]-code) | [i] | ✔ | |
17 | Linear OA(16107, 274, F16, 59) (dual of [274, 167, 60]-code) | [i] | ✔ | |
18 | Linear OA(16115, 283, F16, 61) (dual of [283, 168, 62]-code) | [i] | ✔ | |
19 | Linear OA(16111, 278, F16, 60) (dual of [278, 167, 61]-code) | [i] | ✔ | |
20 | Linear OA(16114, 281, F16, 61) (dual of [281, 167, 62]-code) | [i] | ✔ | |
21 | Linear OA(16122, 290, F16, 63) (dual of [290, 168, 64]-code) | [i] | ✔ | |
22 | Linear OA(16118, 285, F16, 62) (dual of [285, 167, 63]-code) | [i] | ✔ | |
23 | Linear OA(16121, 288, F16, 63) (dual of [288, 167, 64]-code) | [i] | ✔ | |
24 | Linear OA(1694, 259, F16, 55) (dual of [259, 165, 56]-code) | [i] | ✔ | |
25 | Linear OA(1697, 262, F16, 56) (dual of [262, 165, 57]-code) | [i] | ✔ | |
26 | Linear OA(16100, 265, F16, 57) (dual of [265, 165, 58]-code) | [i] | ✔ | |
27 | Linear OA(16103, 268, F16, 58) (dual of [268, 165, 59]-code) | [i] | ✔ | |
28 | Linear OA(16106, 271, F16, 59) (dual of [271, 165, 60]-code) | [i] | ✔ | |
29 | Linear OA(16109, 274, F16, 60) (dual of [274, 165, 61]-code) | [i] | ✔ | |
30 | Linear OA(16113, 278, F16, 61) (dual of [278, 165, 62]-code) | [i] | ✔ | |
31 | Linear OA(16116, 281, F16, 62) (dual of [281, 165, 63]-code) | [i] | ✔ | |
32 | Linear OA(16120, 285, F16, 63) (dual of [285, 165, 64]-code) | [i] | ✔ | |
33 | Linear OA(16123, 288, F16, 64) (dual of [288, 165, 65]-code) | [i] | ✔ | |
34 | Linear OA(16112, 277, F16, 61) (dual of [277, 165, 62]-code) | [i] | ✔ | |
35 | Linear OA(16119, 284, F16, 63) (dual of [284, 165, 64]-code) | [i] | ✔ | |
36 | Linear OA(16115, 280, F16, 62) (dual of [280, 165, 63]-code) | [i] | ✔ | |
37 | Linear OA(16122, 287, F16, 64) (dual of [287, 165, 65]-code) | [i] | ✔ | |
38 | Linear OA(16118, 283, F16, 63) (dual of [283, 165, 64]-code) | [i] | ✔ | |
39 | Linear OA(16125, 290, F16, 65) (dual of [290, 165, 66]-code) | [i] | ✔ | |
40 | Linear OA(16121, 286, F16, 64) (dual of [286, 165, 65]-code) | [i] | ✔ | |
41 | Linear OA(16124, 289, F16, 65) (dual of [289, 165, 66]-code) | [i] | ✔ |