Information on Result #723186

Linear OA(2524, 631, F25, 12) (dual of [631, 607, 13]-code), using construction XX applied to C1 = C([622,8]), C2 = C([0,9]), C3 = C1 + C2 = C([0,8]), and C∩ = C1 ∩ C2 = C([622,9]) based on
  1. linear OA(2521, 624, F25, 11) (dual of [624, 603, 12]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,8}, and designed minimum distance d ≥ |I|+1 = 12 [i]
  2. linear OA(2519, 624, F25, 10) (dual of [624, 605, 11]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
  3. linear OA(2523, 624, F25, 12) (dual of [624, 601, 13]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−2,−1,…,9}, and designed minimum distance d ≥ |I|+1 = 13 [i]
  4. linear OA(2517, 624, F25, 9) (dual of [624, 607, 10]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,8], and designed minimum distance d ≥ |I|+1 = 10 [i]
  5. linear OA(251, 5, F25, 1) (dual of [5, 4, 2]-code), using
  6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2531, 660, F25, 12) (dual of [660, 629, 13]-code) [i](u, u+v)-Construction
2Linear OA(2526, 639, F25, 12) (dual of [639, 613, 13]-code) [i]VarÅ¡amov–Edel Lengthening
3Linear OA(2527, 669, F25, 12) (dual of [669, 642, 13]-code) [i]
4Linear OA(2528, 776, F25, 12) (dual of [776, 748, 13]-code) [i]