Information on Result #723527
Linear OA(2535, 628, F25, 18) (dual of [628, 593, 19]-code), using construction XX applied to C1 = C([623,15]), C2 = C([0,16]), C3 = C1 + C2 = C([0,15]), and C∩ = C1 ∩ C2 = C([623,16]) based on
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2547, 680, F25, 18) (dual of [680, 633, 19]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2548, 694, F25, 18) (dual of [694, 646, 19]-code) | [i] | ||
3 | Linear OA(2549, 696, F25, 18) (dual of [696, 647, 19]-code) | [i] | ||
4 | Linear OA(2550, 732, F25, 18) (dual of [732, 682, 19]-code) | [i] | ||
5 | Linear OA(2539, 645, F25, 18) (dual of [645, 606, 19]-code) | [i] | Varšamov–Edel Lengthening | |
6 | Linear OA(2540, 674, F25, 18) (dual of [674, 634, 19]-code) | [i] | ||
7 | Linear OA(2541, 741, F25, 18) (dual of [741, 700, 19]-code) | [i] | ||
8 | Linear OA(2542, 865, F25, 18) (dual of [865, 823, 19]-code) | [i] | ||
9 | Linear OA(2543, 1037, F25, 18) (dual of [1037, 994, 19]-code) | [i] | ||
10 | Linear OOA(2535, 314, F25, 2, 18) (dual of [(314, 2), 593, 19]-NRT-code) | [i] | OOA Folding |