Information on Result #723548
Linear OA(2547, 624, F25, 24) (dual of [624, 577, 25]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {3,4,…,26}, and designed minimum distance d ≥ |I|+1 = 25
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive Expurgated Narrow-Sense BCH-Codes [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2561, 655, F25, 27) (dual of [655, 594, 28]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2554, 631, F25, 28) (dual of [631, 577, 29]-code) | [i] | ✔ | |
3 | Linear OA(2557, 634, F25, 29) (dual of [634, 577, 30]-code) | [i] | ✔ | |
4 | Linear OA(2560, 637, F25, 30) (dual of [637, 577, 31]-code) | [i] | ✔ | |
5 | Linear OA(2563, 640, F25, 31) (dual of [640, 577, 32]-code) | [i] | ✔ | |
6 | Linear OA(2566, 643, F25, 32) (dual of [643, 577, 33]-code) | [i] | ✔ | |
7 | Linear OA(2569, 646, F25, 33) (dual of [646, 577, 34]-code) | [i] | ✔ | |
8 | Linear OA(2572, 649, F25, 34) (dual of [649, 577, 35]-code) | [i] | ✔ | |
9 | Linear OA(2575, 652, F25, 35) (dual of [652, 577, 36]-code) | [i] | ✔ | |
10 | Linear OA(2578, 655, F25, 36) (dual of [655, 577, 37]-code) | [i] | ✔ | |
11 | Linear OA(2582, 658, F25, 37) (dual of [658, 576, 38]-code) | [i] | ✔ | |
12 | Linear OA(2581, 658, F25, 37) (dual of [658, 577, 38]-code) | [i] | ✔ | |
13 | Linear OA(2585, 661, F25, 38) (dual of [661, 576, 39]-code) | [i] | ✔ | |
14 | Linear OA(2584, 658, F25, 38) (dual of [658, 574, 39]-code) | [i] | ✔ | |
15 | Linear OA(2584, 661, F25, 38) (dual of [661, 577, 39]-code) | [i] | ✔ | |
16 | Linear OA(2588, 664, F25, 39) (dual of [664, 576, 40]-code) | [i] | ✔ | |
17 | Linear OA(2587, 661, F25, 39) (dual of [661, 574, 40]-code) | [i] | ✔ | |
18 | Linear OA(2587, 664, F25, 39) (dual of [664, 577, 40]-code) | [i] | ✔ | |
19 | Linear OA(2591, 667, F25, 40) (dual of [667, 576, 41]-code) | [i] | ✔ | |
20 | Linear OA(2590, 664, F25, 40) (dual of [664, 574, 41]-code) | [i] | ✔ | |
21 | Linear OA(2590, 667, F25, 40) (dual of [667, 577, 41]-code) | [i] | ✔ | |
22 | Linear OA(2594, 670, F25, 41) (dual of [670, 576, 42]-code) | [i] | ✔ | |
23 | Linear OA(2593, 667, F25, 41) (dual of [667, 574, 42]-code) | [i] | ✔ | |
24 | Linear OA(2593, 670, F25, 41) (dual of [670, 577, 42]-code) | [i] | ✔ | |
25 | Linear OA(2597, 673, F25, 42) (dual of [673, 576, 43]-code) | [i] | ✔ | |
26 | Linear OA(2596, 670, F25, 42) (dual of [670, 574, 43]-code) | [i] | ✔ | |
27 | Linear OA(2596, 673, F25, 42) (dual of [673, 577, 43]-code) | [i] | ✔ | |
28 | Linear OA(25100, 676, F25, 43) (dual of [676, 576, 44]-code) | [i] | ✔ | |
29 | Linear OA(2599, 673, F25, 43) (dual of [673, 574, 44]-code) | [i] | ✔ | |
30 | Linear OA(2599, 676, F25, 43) (dual of [676, 577, 44]-code) | [i] | ✔ | |
31 | Linear OA(25104, 681, F25, 44) (dual of [681, 577, 45]-code) | [i] | ✔ | |
32 | Linear OA(25103, 679, F25, 44) (dual of [679, 576, 45]-code) | [i] | ✔ | |
33 | Linear OA(25102, 676, F25, 44) (dual of [676, 574, 45]-code) | [i] | ✔ | |
34 | Linear OA(25109, 686, F25, 45) (dual of [686, 577, 46]-code) | [i] | ✔ |