Information on Result #723847
Linear OA(2564, 624, F25, 34) (dual of [624, 560, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2582, 673, F25, 34) (dual of [673, 591, 35]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
2 | Linear OA(2584, 679, F25, 34) (dual of [679, 595, 35]-code) | [i] | ✔ | |
3 | Linear OA(2583, 676, F25, 34) (dual of [676, 593, 35]-code) | [i] | ✔ | |
4 | Linear OA(2583, 677, F25, 34) (dual of [677, 594, 35]-code) | [i] | ✔ | |
5 | Linear OA(2582, 675, F25, 34) (dual of [675, 593, 35]-code) | [i] | ✔ | |
6 | Linear OA(2581, 673, F25, 34) (dual of [673, 592, 35]-code) | [i] | ✔ | |
7 | Linear OA(2582, 676, F25, 34) (dual of [676, 594, 35]-code) | [i] | ✔ | |
8 | Linear OA(2580, 672, F25, 34) (dual of [672, 592, 35]-code) | [i] | ✔ | |
9 | Linear OA(2579, 670, F25, 34) (dual of [670, 591, 35]-code) | [i] | ✔ | |
10 | Linear OA(2566, 628, F25, 35) (dual of [628, 562, 36]-code) | [i] | ✔ | |
11 | Linear OA(2597, 672, F25, 43) (dual of [672, 575, 44]-code) | [i] | ✔ | |
12 | Linear OA(2569, 631, F25, 36) (dual of [631, 562, 37]-code) | [i] | ✔ | |
13 | Linear OA(25102, 677, F25, 44) (dual of [677, 575, 45]-code) | [i] | ✔ | |
14 | Linear OA(25101, 675, F25, 44) (dual of [675, 574, 45]-code) | [i] | ✔ | |
15 | Linear OA(25100, 672, F25, 44) (dual of [672, 572, 45]-code) | [i] | ✔ | |
16 | Linear OA(2596, 670, F25, 43) (dual of [670, 574, 44]-code) | [i] | ✔ | |
17 | Linear OA(2572, 634, F25, 37) (dual of [634, 562, 38]-code) | [i] | ✔ | |
18 | Linear OA(25100, 673, F25, 44) (dual of [673, 573, 45]-code) | [i] | ✔ | |
19 | Linear OA(2599, 670, F25, 44) (dual of [670, 571, 45]-code) | [i] | ✔ | |
20 | Linear OA(2595, 667, F25, 43) (dual of [667, 572, 44]-code) | [i] | ✔ | |
21 | Linear OA(2575, 637, F25, 38) (dual of [637, 562, 39]-code) | [i] | ✔ | |
22 | Linear OA(25103, 673, F25, 45) (dual of [673, 570, 46]-code) | [i] | ✔ | |
23 | Linear OA(25102, 670, F25, 45) (dual of [670, 568, 46]-code) | [i] | ✔ | |
24 | Linear OA(2598, 667, F25, 44) (dual of [667, 569, 45]-code) | [i] | ✔ | |
25 | Linear OA(2594, 664, F25, 43) (dual of [664, 570, 44]-code) | [i] | ✔ | |
26 | Linear OA(2578, 640, F25, 39) (dual of [640, 562, 40]-code) | [i] | ✔ | |
27 | Linear OA(25101, 667, F25, 45) (dual of [667, 566, 46]-code) | [i] | ✔ | |
28 | Linear OA(2597, 664, F25, 44) (dual of [664, 567, 45]-code) | [i] | ✔ | |
29 | Linear OA(2593, 661, F25, 43) (dual of [661, 568, 44]-code) | [i] | ✔ | |
30 | Linear OA(2581, 643, F25, 40) (dual of [643, 562, 41]-code) | [i] | ✔ | |
31 | Linear OA(25100, 664, F25, 45) (dual of [664, 564, 46]-code) | [i] | ✔ | |
32 | Linear OA(2596, 661, F25, 44) (dual of [661, 565, 45]-code) | [i] | ✔ | |
33 | Linear OA(2592, 658, F25, 43) (dual of [658, 566, 44]-code) | [i] | ✔ | |
34 | Linear OA(2584, 646, F25, 41) (dual of [646, 562, 42]-code) | [i] | ✔ | |
35 | Linear OA(2599, 661, F25, 45) (dual of [661, 562, 46]-code) | [i] | ✔ | |
36 | Linear OA(2595, 658, F25, 44) (dual of [658, 563, 45]-code) | [i] | ✔ | |
37 | Linear OA(2591, 655, F25, 43) (dual of [655, 564, 44]-code) | [i] | ✔ | |
38 | Linear OA(2587, 649, F25, 42) (dual of [649, 562, 43]-code) | [i] | ✔ | |
39 | Linear OA(2598, 658, F25, 45) (dual of [658, 560, 46]-code) | [i] | ✔ | |
40 | Linear OA(2594, 655, F25, 44) (dual of [655, 561, 45]-code) | [i] | ✔ | |
41 | Linear OA(2590, 652, F25, 43) (dual of [652, 562, 44]-code) | [i] | ✔ | |
42 | Linear OA(2568, 628, F25, 36) (dual of [628, 560, 37]-code) | [i] | ✔ | |
43 | Linear OA(2571, 631, F25, 37) (dual of [631, 560, 38]-code) | [i] | ✔ | |
44 | Linear OA(2574, 634, F25, 38) (dual of [634, 560, 39]-code) | [i] | ✔ | |
45 | Linear OA(2577, 637, F25, 39) (dual of [637, 560, 40]-code) | [i] | ✔ | |
46 | Linear OA(2580, 640, F25, 40) (dual of [640, 560, 41]-code) | [i] | ✔ | |
47 | Linear OA(2583, 643, F25, 41) (dual of [643, 560, 42]-code) | [i] | ✔ | |
48 | Linear OA(2586, 646, F25, 42) (dual of [646, 560, 43]-code) | [i] | ✔ | |
49 | Linear OA(2589, 649, F25, 43) (dual of [649, 560, 44]-code) | [i] | ✔ | |
50 | Linear OA(2592, 652, F25, 44) (dual of [652, 560, 45]-code) | [i] | ✔ | |
51 | Linear OA(2595, 655, F25, 45) (dual of [655, 560, 46]-code) | [i] | ✔ | |
52 | Linear OA(2598, 655, F25, 46) (dual of [655, 557, 47]-code) | [i] | ✔ | |
53 | Linear OA(2598, 658, F25, 46) (dual of [658, 560, 47]-code) | [i] | ✔ | |
54 | Linear OA(25101, 658, F25, 47) (dual of [658, 557, 48]-code) | [i] | ✔ | |
55 | Linear OA(25104, 658, F25, 48) (dual of [658, 554, 49]-code) | [i] | ✔ | |
56 | Linear OA(25101, 661, F25, 47) (dual of [661, 560, 48]-code) | [i] | ✔ | |
57 | Linear OA(25104, 661, F25, 48) (dual of [661, 557, 49]-code) | [i] | ✔ | |
58 | Linear OA(25107, 661, F25, 49) (dual of [661, 554, 50]-code) | [i] | ✔ | |
59 | Linear OA(25104, 664, F25, 48) (dual of [664, 560, 49]-code) | [i] | ✔ | |
60 | Linear OA(25107, 664, F25, 49) (dual of [664, 557, 50]-code) | [i] | ✔ | |
61 | Linear OA(25110, 664, F25, 50) (dual of [664, 554, 51]-code) | [i] | ✔ | |
62 | Linear OA(25107, 667, F25, 49) (dual of [667, 560, 50]-code) | [i] | ✔ | |
63 | Linear OA(25110, 667, F25, 50) (dual of [667, 557, 51]-code) | [i] | ✔ | |
64 | Linear OA(25110, 670, F25, 50) (dual of [670, 560, 51]-code) | [i] | ✔ |