Information on Result #726800
Linear OA(2764, 732, F27, 34) (dual of [732, 668, 35]-code), using construction XX applied to C1 = C([727,31]), C2 = C([0,32]), C3 = C1 + C2 = C([0,31]), and C∩ = C1 ∩ C2 = C([727,32]) based on
- linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,31}, and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2762, 728, F27, 33) (dual of [728, 666, 34]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,32], and designed minimum distance d ≥ |I|+1 = 34 [i]
- linear OA(2764, 728, F27, 34) (dual of [728, 664, 35]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,32}, and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(2760, 728, F27, 32) (dual of [728, 668, 33]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,31], and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2785, 796, F27, 34) (dual of [796, 711, 35]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2786, 800, F27, 34) (dual of [800, 714, 35]-code) | [i] | ||
3 | Linear OA(2787, 808, F27, 34) (dual of [808, 721, 35]-code) | [i] | ||
4 | Linear OA(2788, 814, F27, 34) (dual of [814, 726, 35]-code) | [i] | ||
5 | Linear OA(2789, 816, F27, 34) (dual of [816, 727, 35]-code) | [i] | ||
6 | Linear OA(2790, 820, F27, 34) (dual of [820, 730, 35]-code) | [i] | ||
7 | Linear OA(2791, 826, F27, 34) (dual of [826, 735, 35]-code) | [i] | ||
8 | Linear OA(2792, 828, F27, 34) (dual of [828, 736, 35]-code) | [i] | ||
9 | Linear OA(2793, 838, F27, 34) (dual of [838, 745, 35]-code) | [i] | ||
10 | Linear OA(2794, 841, F27, 34) (dual of [841, 747, 35]-code) | [i] | ||
11 | Linear OA(2795, 918, F27, 34) (dual of [918, 823, 35]-code) | [i] | ||
12 | Linear OA(2771, 753, F27, 34) (dual of [753, 682, 35]-code) | [i] | Varšamov–Edel Lengthening | |
13 | Linear OA(2772, 771, F27, 34) (dual of [771, 699, 35]-code) | [i] | ||
14 | Linear OA(2773, 802, F27, 34) (dual of [802, 729, 35]-code) | [i] | ||
15 | Linear OA(2774, 853, F27, 34) (dual of [853, 779, 35]-code) | [i] | ||
16 | Linear OA(2775, 927, F27, 34) (dual of [927, 852, 35]-code) | [i] | ||
17 | Linear OA(2776, 1019, F27, 34) (dual of [1019, 943, 35]-code) | [i] | ||
18 | Linear OOA(2764, 366, F27, 2, 34) (dual of [(366, 2), 668, 35]-NRT-code) | [i] | OOA Folding |