Information on Result #727768
Linear OA(3227, 1027, F32, 14) (dual of [1027, 1000, 15]-code), using construction XX applied to C1 = C([1022,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([1022,12]) based on
- linear OA(3225, 1023, F32, 13) (dual of [1023, 998, 14]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(3225, 1023, F32, 13) (dual of [1023, 998, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(3227, 1023, F32, 14) (dual of [1023, 996, 15]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
- linear OA(3223, 1023, F32, 12) (dual of [1023, 1000, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(845, 1027, S8, 14) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1634, 1027, S16, 14) | [i] | ||
3 | Linear OA(3284, 2054, F32, 29) (dual of [2054, 1970, 30]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3234, 1060, F32, 14) (dual of [1060, 1026, 15]-code) | [i] | ||
5 | Linear OA(3235, 1071, F32, 14) (dual of [1071, 1036, 15]-code) | [i] | ||
6 | Linear OA(3236, 1073, F32, 14) (dual of [1073, 1037, 15]-code) | [i] | ||
7 | Linear OA(3237, 1093, F32, 14) (dual of [1093, 1056, 15]-code) | [i] | ||
8 | Linear OA(3238, 1122, F32, 14) (dual of [1122, 1084, 15]-code) | [i] | ||
9 | Linear OA(3239, 1126, F32, 14) (dual of [1126, 1087, 15]-code) | [i] | ||
10 | Linear OA(3231, 1056, F32, 14) (dual of [1056, 1025, 15]-code) | [i] | Varšamov–Edel Lengthening | |
11 | Linear OA(3232, 1119, F32, 14) (dual of [1119, 1087, 15]-code) | [i] | ||
12 | Linear OA(3233, 1282, F32, 14) (dual of [1282, 1249, 15]-code) | [i] | ||
13 | Linear OA(3234, 1599, F32, 14) (dual of [1599, 1565, 15]-code) | [i] | ||
14 | Linear OA(3235, 2070, F32, 14) (dual of [2070, 2035, 15]-code) | [i] |