Information on Result #728181
Linear OA(3243, 1027, F32, 22) (dual of [1027, 984, 23]-code), using construction XX applied to C1 = C([1022,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([1022,20]) based on
- linear OA(3241, 1023, F32, 21) (dual of [1023, 982, 22]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(3241, 1023, F32, 21) (dual of [1023, 982, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(3243, 1023, F32, 22) (dual of [1023, 980, 23]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(3239, 1023, F32, 20) (dual of [1023, 984, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(872, 1027, S8, 22) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1654, 1027, S16, 22) | [i] | ||
3 | Linear OA(3255, 1071, F32, 22) (dual of [1071, 1016, 23]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3256, 1073, F32, 22) (dual of [1073, 1017, 23]-code) | [i] | ||
5 | Linear OA(3257, 1091, F32, 22) (dual of [1091, 1034, 23]-code) | [i] | ||
6 | Linear OA(3258, 1093, F32, 22) (dual of [1093, 1035, 23]-code) | [i] | ||
7 | Linear OA(3259, 1103, F32, 22) (dual of [1103, 1044, 23]-code) | [i] | ||
8 | Linear OA(3260, 1105, F32, 22) (dual of [1105, 1045, 23]-code) | [i] | ||
9 | Linear OA(3261, 1125, F32, 22) (dual of [1125, 1064, 23]-code) | [i] | ||
10 | Linear OA(3262, 1127, F32, 22) (dual of [1127, 1065, 23]-code) | [i] | ||
11 | Linear OA(3263, 1137, F32, 22) (dual of [1137, 1074, 23]-code) | [i] | ||
12 | Linear OA(3248, 1046, F32, 22) (dual of [1046, 998, 23]-code) | [i] | Varšamov–Edel Lengthening | |
13 | Linear OA(3249, 1079, F32, 22) (dual of [1079, 1030, 23]-code) | [i] | ||
14 | Linear OA(3250, 1154, F32, 22) (dual of [1154, 1104, 23]-code) | [i] | ||
15 | Linear OA(3251, 1296, F32, 22) (dual of [1296, 1245, 23]-code) | [i] | ||
16 | Linear OA(3252, 1507, F32, 22) (dual of [1507, 1455, 23]-code) | [i] |