Information on Result #729019
Linear OA(3268, 1027, F32, 36) (dual of [1027, 959, 37]-code), using construction XX applied to C1 = C([1022,33]), C2 = C([0,34]), C3 = C1 + C2 = C([0,33]), and C∩ = C1 ∩ C2 = C([1022,34]) based on
- linear OA(3266, 1023, F32, 35) (dual of [1023, 957, 36]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,33}, and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3266, 1023, F32, 35) (dual of [1023, 957, 36]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,34], and designed minimum distance d ≥ |I|+1 = 36 [i]
- linear OA(3268, 1023, F32, 36) (dual of [1023, 955, 37]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,34}, and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(3264, 1023, F32, 34) (dual of [1023, 959, 35]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,33], and designed minimum distance d ≥ |I|+1 = 35 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(8114, 1027, S8, 36) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1685, 1027, S16, 36) | [i] | ||
3 | Linear OA(3289, 1091, F32, 36) (dual of [1091, 1002, 37]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3290, 1093, F32, 36) (dual of [1093, 1003, 37]-code) | [i] | ||
5 | Linear OA(3291, 1103, F32, 36) (dual of [1103, 1012, 37]-code) | [i] | ||
6 | Linear OA(3292, 1105, F32, 36) (dual of [1105, 1013, 37]-code) | [i] | ||
7 | Linear OA(3293, 1125, F32, 36) (dual of [1125, 1032, 37]-code) | [i] | ||
8 | Linear OA(3294, 1127, F32, 36) (dual of [1127, 1033, 37]-code) | [i] | ||
9 | Linear OA(3295, 1131, F32, 36) (dual of [1131, 1036, 37]-code) | [i] | ||
10 | Linear OA(3296, 1133, F32, 36) (dual of [1133, 1037, 37]-code) | [i] | ||
11 | Linear OA(3297, 1147, F32, 36) (dual of [1147, 1050, 37]-code) | [i] | ||
12 | Linear OA(3298, 1149, F32, 36) (dual of [1149, 1051, 37]-code) | [i] | ||
13 | Linear OA(3299, 1151, F32, 36) (dual of [1151, 1052, 37]-code) | [i] | ||
14 | Linear OA(32100, 1153, F32, 36) (dual of [1153, 1053, 37]-code) | [i] | ||
15 | Linear OA(32101, 1155, F32, 36) (dual of [1155, 1054, 37]-code) | [i] | ||
16 | Linear OA(32102, 1372, F32, 36) (dual of [1372, 1270, 37]-code) | [i] | ||
17 | Linear OA(3276, 1051, F32, 36) (dual of [1051, 975, 37]-code) | [i] | Varšamov–Edel Lengthening | |
18 | Linear OA(3277, 1070, F32, 36) (dual of [1070, 993, 37]-code) | [i] | ||
19 | Linear OA(3278, 1107, F32, 36) (dual of [1107, 1029, 37]-code) | [i] | ||
20 | Linear OA(3279, 1169, F32, 36) (dual of [1169, 1090, 37]-code) | [i] | ||
21 | Linear OA(3280, 1263, F32, 36) (dual of [1263, 1183, 37]-code) | [i] | ||
22 | Linear OA(3281, 1385, F32, 36) (dual of [1385, 1304, 37]-code) | [i] |