Information on Result #729126
Linear OA(3274, 1027, F32, 39) (dual of [1027, 953, 40]-code), using construction XX applied to C1 = C([1022,36]), C2 = C([0,37]), C3 = C1 + C2 = C([0,36]), and C∩ = C1 ∩ C2 = C([1022,37]) based on
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(8124, 1027, S8, 39) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1693, 1027, S16, 39) | [i] | ||
3 | Linear OA(3296, 1091, F32, 39) (dual of [1091, 995, 40]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3297, 1093, F32, 39) (dual of [1093, 996, 40]-code) | [i] | ||
5 | Linear OA(3298, 1103, F32, 39) (dual of [1103, 1005, 40]-code) | [i] | ||
6 | Linear OA(3299, 1105, F32, 39) (dual of [1105, 1006, 40]-code) | [i] | ||
7 | Linear OA(32100, 1125, F32, 39) (dual of [1125, 1025, 40]-code) | [i] | ||
8 | Linear OA(32101, 1127, F32, 39) (dual of [1127, 1026, 40]-code) | [i] | ||
9 | Linear OA(32102, 1131, F32, 39) (dual of [1131, 1029, 40]-code) | [i] | ||
10 | Linear OA(32103, 1133, F32, 39) (dual of [1133, 1030, 40]-code) | [i] | ||
11 | Linear OA(32104, 1147, F32, 39) (dual of [1147, 1043, 40]-code) | [i] | ||
12 | Linear OA(32105, 1149, F32, 39) (dual of [1149, 1044, 40]-code) | [i] | ||
13 | Linear OA(32106, 1151, F32, 39) (dual of [1151, 1045, 40]-code) | [i] | ||
14 | Linear OA(32107, 1153, F32, 39) (dual of [1153, 1046, 40]-code) | [i] | ||
15 | Linear OA(32108, 1155, F32, 39) (dual of [1155, 1047, 40]-code) | [i] | ||
16 | Linear OA(32109, 1231, F32, 39) (dual of [1231, 1122, 40]-code) | [i] | ||
17 | Linear OA(32110, 1372, F32, 39) (dual of [1372, 1262, 40]-code) | [i] | ||
18 | Linear OA(3282, 1051, F32, 39) (dual of [1051, 969, 40]-code) | [i] | Varšamov–Edel Lengthening | |
19 | Linear OA(3283, 1070, F32, 39) (dual of [1070, 987, 40]-code) | [i] | ||
20 | Linear OA(3284, 1107, F32, 39) (dual of [1107, 1023, 40]-code) | [i] | ||
21 | Linear OA(3285, 1169, F32, 39) (dual of [1169, 1084, 40]-code) | [i] | ||
22 | Linear OA(3286, 1260, F32, 39) (dual of [1260, 1174, 40]-code) | [i] | ||
23 | Linear OA(3287, 1373, F32, 39) (dual of [1373, 1286, 40]-code) | [i] |