Information on Result #729147
Linear OA(3276, 1027, F32, 40) (dual of [1027, 951, 41]-code), using construction XX applied to C1 = C([1022,37]), C2 = C([0,38]), C3 = C1 + C2 = C([0,37]), and C∩ = C1 ∩ C2 = C([1022,38]) based on
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,37}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3274, 1023, F32, 39) (dual of [1023, 949, 40]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,38], and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(3276, 1023, F32, 40) (dual of [1023, 947, 41]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,38}, and designed minimum distance d ≥ |I|+1 = 41 [i]
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,37], and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(8127, 1027, S8, 40) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1695, 1027, S16, 40) | [i] | ||
3 | Linear OA(3299, 1091, F32, 40) (dual of [1091, 992, 41]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(32100, 1093, F32, 40) (dual of [1093, 993, 41]-code) | [i] | ||
5 | Linear OA(32101, 1103, F32, 40) (dual of [1103, 1002, 41]-code) | [i] | ||
6 | Linear OA(32102, 1105, F32, 40) (dual of [1105, 1003, 41]-code) | [i] | ||
7 | Linear OA(32103, 1125, F32, 40) (dual of [1125, 1022, 41]-code) | [i] | ||
8 | Linear OA(32104, 1127, F32, 40) (dual of [1127, 1023, 41]-code) | [i] | ||
9 | Linear OA(32105, 1131, F32, 40) (dual of [1131, 1026, 41]-code) | [i] | ||
10 | Linear OA(32106, 1133, F32, 40) (dual of [1133, 1027, 41]-code) | [i] | ||
11 | Linear OA(32107, 1147, F32, 40) (dual of [1147, 1040, 41]-code) | [i] | ||
12 | Linear OA(32108, 1149, F32, 40) (dual of [1149, 1041, 41]-code) | [i] | ||
13 | Linear OA(32109, 1151, F32, 40) (dual of [1151, 1042, 41]-code) | [i] | ||
14 | Linear OA(32110, 1153, F32, 40) (dual of [1153, 1043, 41]-code) | [i] | ||
15 | Linear OA(3284, 1051, F32, 40) (dual of [1051, 967, 41]-code) | [i] | Varšamov–Edel Lengthening | |
16 | Linear OA(3285, 1071, F32, 40) (dual of [1071, 986, 41]-code) | [i] | ||
17 | Linear OA(3286, 1108, F32, 40) (dual of [1108, 1022, 41]-code) | [i] | ||
18 | Linear OA(3287, 1170, F32, 40) (dual of [1170, 1083, 41]-code) | [i] | ||
19 | Linear OA(3288, 1261, F32, 40) (dual of [1261, 1173, 41]-code) | [i] | ||
20 | Linear OA(3289, 1372, F32, 40) (dual of [1372, 1283, 41]-code) | [i] |