Information on Result #734470

Linear OA(3215, 2052, F32, 6) (dual of [2052, 2037, 7]-code), using (u, u+v)-construction based on
  1. linear OA(324, 1025, F32, 3) (dual of [1025, 1021, 4]-code or 1025-cap in PG(3,32)), using
  2. linear OA(3211, 1027, F32, 6) (dual of [1027, 1016, 7]-code), using
    • construction XX applied to C1 = C([1022,3]), C2 = C([0,4]), C3 = C1 + C2 = C([0,3]), and C∩ = C1 ∩ C2 = C([1022,4]) [i] based on
      1. linear OA(329, 1023, F32, 5) (dual of [1023, 1014, 6]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,1,2,3}, and designed minimum distance d ≥ |I|+1 = 6 [i]
      2. linear OA(329, 1023, F32, 5) (dual of [1023, 1014, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
      3. linear OA(3211, 1023, F32, 6) (dual of [1023, 1012, 7]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,4}, and designed minimum distance d ≥ |I|+1 = 7 [i]
      4. linear OA(327, 1023, F32, 4) (dual of [1023, 1016, 5]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
      5. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
      6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(3215, 1026, F32, 2, 6) (dual of [(1026, 2), 2037, 7]-NRT-code) [i]OOA Folding
2Linear OOA(3215, 684, F32, 6, 6) (dual of [(684, 6), 4089, 7]-NRT-code) [i]OA Folding and Stacking