Information on Result #736183
Linear OA(315, 85, F3, 6) (dual of [85, 70, 7]-code), using codes constructed by inverting construction Y1
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(315, 49, F3, 2, 6) (dual of [(49, 2), 83, 7]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(315, 49, F3, 3, 6) (dual of [(49, 3), 132, 7]-NRT-code) | [i] | ||
3 | Linear OOA(315, 49, F3, 4, 6) (dual of [(49, 4), 181, 7]-NRT-code) | [i] | ||
4 | Linear OOA(315, 49, F3, 5, 6) (dual of [(49, 5), 230, 7]-NRT-code) | [i] | ||
5 | Linear OA(3223, 771, F3, 53) (dual of [771, 548, 54]-code) | [i] | Construction X with Extended Narrow-Sense BCH Codes | |
6 | Linear OA(3211, 771, F3, 50) (dual of [771, 560, 51]-code) | [i] | ||
7 | Linear OA(3199, 771, F3, 47) (dual of [771, 572, 48]-code) | [i] | ||
8 | Linear OA(3187, 771, F3, 44) (dual of [771, 584, 45]-code) | [i] | ||
9 | Linear OA(3175, 771, F3, 41) (dual of [771, 596, 42]-code) | [i] | ||
10 | Linear OA(3163, 771, F3, 38) (dual of [771, 608, 39]-code) | [i] | ||
11 | Linear OA(3151, 771, F3, 35) (dual of [771, 620, 36]-code) | [i] | ||
12 | Linear OA(3139, 771, F3, 32) (dual of [771, 632, 33]-code) | [i] | ||
13 | Linear OA(3127, 771, F3, 29) (dual of [771, 644, 30]-code) | [i] | ||
14 | Linear OA(3118, 771, F3, 26) (dual of [771, 653, 27]-code) | [i] | ||
15 | Linear OA(3250, 1594403, F3, 27) (dual of [1594403, 1594153, 28]-code) | [i] | ||
16 | Linear OA(3237, 1594403, F3, 26) (dual of [1594403, 1594166, 27]-code) | [i] | ||
17 | Linear OA(3244, 531516, F3, 29) (dual of [531516, 531272, 30]-code) | [i] | ||
18 | Linear OA(3220, 531516, F3, 26) (dual of [531516, 531296, 27]-code) | [i] | ||
19 | Linear OA(3247, 177217, F3, 32) (dual of [177217, 176970, 33]-code) | [i] | ||
20 | Linear OA(3225, 177217, F3, 29) (dual of [177217, 176992, 30]-code) | [i] | ||
21 | Linear OA(3203, 177217, F3, 26) (dual of [177217, 177014, 27]-code) | [i] | ||
22 | Linear OA(3246, 59114, F3, 35) (dual of [59114, 58868, 36]-code) | [i] | ||
23 | Linear OA(3226, 59114, F3, 32) (dual of [59114, 58888, 33]-code) | [i] | ||
24 | Linear OA(3206, 59114, F3, 29) (dual of [59114, 58908, 30]-code) | [i] | ||
25 | Linear OA(3186, 59114, F3, 26) (dual of [59114, 58928, 27]-code) | [i] | ||
26 | Linear OA(3250, 19743, F3, 39) (dual of [19743, 19493, 40]-code) | [i] | ||
27 | Linear OA(3241, 19743, F3, 38) (dual of [19743, 19502, 39]-code) | [i] | ||
28 | Linear OA(3223, 19743, F3, 35) (dual of [19743, 19520, 36]-code) | [i] | ||
29 | Linear OA(3205, 19743, F3, 32) (dual of [19743, 19538, 33]-code) | [i] | ||
30 | Linear OA(3187, 19743, F3, 29) (dual of [19743, 19556, 30]-code) | [i] | ||
31 | Linear OA(3169, 19743, F3, 26) (dual of [19743, 19574, 27]-code) | [i] | ||
32 | Linear OA(3248, 6616, F3, 44) (dual of [6616, 6368, 45]-code) | [i] | ||
33 | Linear OA(3232, 6616, F3, 41) (dual of [6616, 6384, 42]-code) | [i] | ||
34 | Linear OA(3216, 6616, F3, 38) (dual of [6616, 6400, 39]-code) | [i] | ||
35 | Linear OA(3200, 6616, F3, 35) (dual of [6616, 6416, 36]-code) | [i] | ||
36 | Linear OA(3184, 6616, F3, 32) (dual of [6616, 6432, 33]-code) | [i] | ||
37 | Linear OA(3168, 6616, F3, 29) (dual of [6616, 6448, 30]-code) | [i] | ||
38 | Linear OA(3152, 6616, F3, 26) (dual of [6616, 6464, 27]-code) | [i] | ||
39 | Linear OOA(315, 42, F3, 2, 6) (dual of [(42, 2), 69, 7]-NRT-code) | [i] | OOA Folding | |
40 | Linear OOA(315, 28, F3, 3, 6) (dual of [(28, 3), 69, 7]-NRT-code) | [i] |