Information on Result #736225

Linear OA(316, 82, F3, 7) (dual of [82, 66, 8]-code), using generator matrices provided on Edel’s homepage

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(344, 116, F3, 15) (dual of [116, 72, 16]-code) [i](u, u+v)-Construction
2Linear OA(3233, 531524, F3, 27) (dual of [531524, 531291, 28]-code) [i]Construction X with Cyclic Codes
3Linear OA(3215, 177230, F3, 27) (dual of [177230, 177015, 28]-code) [i]
4Linear OA(3237, 59126, F3, 33) (dual of [59126, 58889, 34]-code) [i]
5Linear OA(3197, 59126, F3, 27) (dual of [59126, 58929, 28]-code) [i]
6Linear OA(3215, 19754, F3, 33) (dual of [19754, 19539, 34]-code) [i]
7Linear OA(3179, 19754, F3, 27) (dual of [19754, 19575, 28]-code) [i]
8Linear OA(3225, 6626, F3, 39) (dual of [6626, 6401, 40]-code) [i]
9Linear OA(3193, 6626, F3, 33) (dual of [6626, 6433, 34]-code) [i]
10Linear OA(3227, 2246, F3, 45) (dual of [2246, 2019, 46]-code) [i]
11Linear OA(3199, 2246, F3, 39) (dual of [2246, 2047, 40]-code) [i]
12Linear OA(3171, 2246, F3, 33) (dual of [2246, 2075, 34]-code) [i]
13Linear OA(3233, 531517, F3, 28) (dual of [531517, 531284, 29]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
14Linear OA(3237, 177218, F3, 31) (dual of [177218, 176981, 32]-code) [i]
15Linear OA(3215, 177218, F3, 28) (dual of [177218, 177003, 29]-code) [i]
16Linear OA(3237, 177229, F3, 30) (dual of [177229, 176992, 31]-code) [i]
17Linear OA(3237, 59115, F3, 34) (dual of [59115, 58878, 35]-code) [i]
18Linear OA(3217, 59115, F3, 31) (dual of [59115, 58898, 32]-code) [i]
19Linear OA(3197, 59115, F3, 28) (dual of [59115, 58918, 29]-code) [i]
20Linear OA(3217, 59125, F3, 30) (dual of [59125, 58908, 31]-code) [i]
21Linear OA(3233, 19744, F3, 37) (dual of [19744, 19511, 38]-code) [i]
22Linear OA(3215, 19744, F3, 34) (dual of [19744, 19529, 35]-code) [i]
23Linear OA(3197, 19744, F3, 31) (dual of [19744, 19547, 32]-code) [i]
24Linear OA(3179, 19744, F3, 28) (dual of [19744, 19565, 29]-code) [i]
25Linear OA(3233, 19753, F3, 36) (dual of [19753, 19520, 37]-code) [i]
26Linear OA(3197, 19753, F3, 30) (dual of [19753, 19556, 31]-code) [i]
27Linear OA(3241, 6617, F3, 43) (dual of [6617, 6376, 44]-code) [i]
28Linear OA(3225, 6617, F3, 40) (dual of [6617, 6392, 41]-code) [i]
29Linear OA(3209, 6617, F3, 37) (dual of [6617, 6408, 38]-code) [i]
30Linear OA(3193, 6617, F3, 34) (dual of [6617, 6424, 35]-code) [i]
31Linear OA(3177, 6617, F3, 31) (dual of [6617, 6440, 32]-code) [i]
32Linear OA(3161, 6617, F3, 28) (dual of [6617, 6456, 29]-code) [i]
33Linear OA(3241, 6625, F3, 42) (dual of [6625, 6384, 43]-code) [i]
34Linear OA(3209, 6625, F3, 36) (dual of [6625, 6416, 37]-code) [i]
35Linear OA(3177, 6625, F3, 30) (dual of [6625, 6448, 31]-code) [i]
36Linear OA(3241, 2238, F3, 49) (dual of [2238, 1997, 50]-code) [i]
37Linear OA(3227, 2238, F3, 46) (dual of [2238, 2011, 47]-code) [i]
38Linear OA(3213, 2238, F3, 43) (dual of [2238, 2025, 44]-code) [i]
39Linear OA(3199, 2238, F3, 40) (dual of [2238, 2039, 41]-code) [i]
40Linear OA(3185, 2238, F3, 37) (dual of [2238, 2053, 38]-code) [i]
41Linear OA(3171, 2238, F3, 34) (dual of [2238, 2067, 35]-code) [i]
42Linear OA(3157, 2238, F3, 31) (dual of [2238, 2081, 32]-code) [i]
43Linear OA(3143, 2238, F3, 28) (dual of [2238, 2095, 29]-code) [i]
44Linear OA(3241, 2245, F3, 48) (dual of [2245, 2004, 49]-code) [i]
45Linear OA(3213, 2245, F3, 42) (dual of [2245, 2032, 43]-code) [i]
46Linear OA(3185, 2245, F3, 36) (dual of [2245, 2060, 37]-code) [i]
47Linear OA(3157, 2245, F3, 30) (dual of [2245, 2088, 31]-code) [i]
48Linear OOA(316, 41, F3, 2, 7) (dual of [(41, 2), 66, 8]-NRT-code) [i]OOA Folding
49Linear OOA(316, 27, F3, 3, 7) (dual of [(27, 3), 65, 8]-NRT-code) [i]