Information on Result #737445

Linear OA(4211, 220, F4, 144) (dual of [220, 9, 145]-code), using construction XX applied to C1 = C([0,130]), C2 = C([1,142]), C3 = C1 + C2 = C([1,130]), and C∩ = C1 ∩ C2 = C([0,142]) based on
  1. linear OA(4187, 195, F4, 131) (dual of [195, 8, 132]-code), using the expurgated narrow-sense BCH-code C(I) with length 195 | 46−1, defining interval I = [0,130], and designed minimum distance d ≥ |I|+1 = 132 [i]
  2. linear OA(4192, 195, F4, 142) (dual of [195, 3, 143]-code), using the narrow-sense BCH-code C(I) with length 195 | 46−1, defining interval I = [1,142], and designed minimum distance d ≥ |I|+1 = 143 [i]
  3. linear OA(4193, 195, F4, 155) (dual of [195, 2, 156]-code), using the expurgated narrow-sense BCH-code C(I) with length 195 | 46−1, defining interval I = [0,142], and minimum distance d ≥ |{−12,−11,…,142}|+1 = 156 (BCH-bound) [i]
  4. linear OA(4186, 195, F4, 130) (dual of [195, 9, 131]-code), using the narrow-sense BCH-code C(I) with length 195 | 46−1, defining interval I = [1,130], and designed minimum distance d ≥ |I|+1 = 131 [i]
  5. linear OA(41, 2, F4, 1) (dual of [2, 1, 2]-code), using
  6. linear OA(417, 23, F4, 12) (dual of [23, 6, 13]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(4211, 110, F4, 2, 144) (dual of [(110, 2), 9, 145]-NRT-code) [i]OOA Folding