Information on Result #738059

Linear OA(2197, 213, F2, 93) (dual of [213, 16, 94]-code), using concatenation of two codes based on
  1. linear OA(463, 71, F4, 46) (dual of [71, 8, 47]-code), using
  2. linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2197, 213, F2, 92) (dual of [213, 16, 93]-code) [i]Strength Reduction
2Linear OA(2197, 213, F2, 91) (dual of [213, 16, 92]-code) [i]
3Linear OA(2197, 213, F2, 90) (dual of [213, 16, 91]-code) [i]
4Linear OA(2197, 213, F2, 89) (dual of [213, 16, 90]-code) [i]
5Linear OA(2197, 213, F2, 88) (dual of [213, 16, 89]-code) [i]
6Linear OA(2204, 220, F2, 93) (dual of [220, 16, 94]-code) [i]Code Embedding in Larger Space
7Linear OA(2205, 221, F2, 93) (dual of [221, 16, 94]-code) [i]
8Linear OA(2196, 212, F2, 92) (dual of [212, 16, 93]-code) [i]Truncation
9Linear OA(2195, 211, F2, 91) (dual of [211, 16, 92]-code) [i]
10Linear OA(2193, 209, F2, 89) (dual of [209, 16, 90]-code) [i]
11Linear OA(2192, 208, F2, 88) (dual of [208, 16, 89]-code) [i]
12Linear OA(2190, 206, F2, 86) (dual of [206, 16, 87]-code) [i]
13Linear OA(2189, 205, F2, 85) (dual of [205, 16, 86]-code) [i]
14Linear OA(2188, 204, F2, 84) (dual of [204, 16, 85]-code) [i]
15Linear OA(2187, 203, F2, 83) (dual of [203, 16, 84]-code) [i]
16Linear OA(2186, 202, F2, 82) (dual of [202, 16, 83]-code) [i]
17Linear OA(2185, 201, F2, 81) (dual of [201, 16, 82]-code) [i]
18Linear OA(2184, 200, F2, 80) (dual of [200, 16, 81]-code) [i]
19Linear OA(2183, 199, F2, 79) (dual of [199, 16, 80]-code) [i]
20Linear OA(2182, 198, F2, 78) (dual of [198, 16, 79]-code) [i]
21Linear OOA(2197, 71, F2, 3, 93) (dual of [(71, 3), 16, 94]-NRT-code) [i]OOA Folding