Information on Result #803953
Linear OOA(2514, 25, F25, 2, 14) (dual of [(25, 2), 36, 15]-NRT-code), using Reed–Solomon NRT-code RS(2;36,25)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(25110, 213, F25, 2, 71) (dual of [(213, 2), 316, 72]-NRT-code) | [i] | Construction X with Algebraic-Geometric NRT-Codes | |
2 | Linear OOA(25109, 213, F25, 2, 70) (dual of [(213, 2), 317, 71]-NRT-code) | [i] | ||
3 | Linear OOA(25108, 213, F25, 2, 69) (dual of [(213, 2), 318, 70]-NRT-code) | [i] | ||
4 | Linear OOA(25107, 213, F25, 2, 68) (dual of [(213, 2), 319, 69]-NRT-code) | [i] | ||
5 | Linear OOA(25106, 213, F25, 2, 67) (dual of [(213, 2), 320, 68]-NRT-code) | [i] | ||
6 | Linear OOA(25105, 213, F25, 2, 66) (dual of [(213, 2), 321, 67]-NRT-code) | [i] | ||
7 | Linear OOA(25104, 213, F25, 2, 65) (dual of [(213, 2), 322, 66]-NRT-code) | [i] | ||
8 | Linear OOA(25103, 213, F25, 2, 64) (dual of [(213, 2), 323, 65]-NRT-code) | [i] | ||
9 | Linear OOA(25102, 213, F25, 2, 63) (dual of [(213, 2), 324, 64]-NRT-code) | [i] | ||
10 | Linear OOA(25101, 213, F25, 2, 62) (dual of [(213, 2), 325, 63]-NRT-code) | [i] | ||
11 | Linear OOA(25100, 213, F25, 2, 61) (dual of [(213, 2), 326, 62]-NRT-code) | [i] | ||
12 | Linear OOA(2599, 213, F25, 2, 60) (dual of [(213, 2), 327, 61]-NRT-code) | [i] | ||
13 | Linear OOA(2598, 213, F25, 2, 59) (dual of [(213, 2), 328, 60]-NRT-code) | [i] | ||
14 | Linear OOA(2597, 213, F25, 2, 58) (dual of [(213, 2), 329, 59]-NRT-code) | [i] | ||
15 | Linear OOA(2596, 213, F25, 2, 57) (dual of [(213, 2), 330, 58]-NRT-code) | [i] | ||
16 | Linear OOA(2595, 213, F25, 2, 56) (dual of [(213, 2), 331, 57]-NRT-code) | [i] | ||
17 | Linear OOA(2594, 213, F25, 2, 55) (dual of [(213, 2), 332, 56]-NRT-code) | [i] | ||
18 | Linear OOA(2593, 213, F25, 2, 54) (dual of [(213, 2), 333, 55]-NRT-code) | [i] | ||
19 | Linear OOA(2592, 213, F25, 2, 53) (dual of [(213, 2), 334, 54]-NRT-code) | [i] | ||
20 | Linear OOA(2591, 213, F25, 2, 52) (dual of [(213, 2), 335, 53]-NRT-code) | [i] | ||
21 | Linear OOA(2590, 213, F25, 2, 51) (dual of [(213, 2), 336, 52]-NRT-code) | [i] | ||
22 | Linear OOA(2589, 213, F25, 2, 50) (dual of [(213, 2), 337, 51]-NRT-code) | [i] | ||
23 | Linear OOA(2588, 213, F25, 2, 49) (dual of [(213, 2), 338, 50]-NRT-code) | [i] | ||
24 | Linear OOA(2587, 213, F25, 2, 48) (dual of [(213, 2), 339, 49]-NRT-code) | [i] | ||
25 | Linear OOA(2586, 213, F25, 2, 47) (dual of [(213, 2), 340, 48]-NRT-code) | [i] | ||
26 | Linear OOA(2585, 213, F25, 2, 46) (dual of [(213, 2), 341, 47]-NRT-code) | [i] | ||
27 | Linear OOA(2584, 213, F25, 2, 45) (dual of [(213, 2), 342, 46]-NRT-code) | [i] | ||
28 | Linear OOA(2583, 213, F25, 2, 44) (dual of [(213, 2), 343, 45]-NRT-code) | [i] |