Information on Result #806760
Linear OOA(2104, 267, F2, 2, 23) (dual of [(267, 2), 430, 24]-NRT-code), using OOA 2-folding based on linear OA(2104, 534, F2, 23) (dual of [534, 430, 24]-code), using
- 1 times code embedding in larger space [i] based on linear OA(2103, 533, F2, 23) (dual of [533, 430, 24]-code), using
- adding a parity check bit [i] based on linear OA(2102, 532, F2, 22) (dual of [532, 430, 23]-code), using
- construction XX applied to C1 = C([509,18]), C2 = C([1,20]), C3 = C1 + C2 = C([1,18]), and C∩ = C1 ∩ C2 = C([509,20]) [i] based on
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(290, 511, F2, 20) (dual of [511, 421, 21]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(2100, 511, F2, 23) (dual of [511, 411, 24]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(281, 511, F2, 18) (dual of [511, 430, 19]-code), using the primitive narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [1,18], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(21, 11, F2, 1) (dual of [11, 10, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
- construction XX applied to C1 = C([509,18]), C2 = C([1,20]), C3 = C1 + C2 = C([1,18]), and C∩ = C1 ∩ C2 = C([509,20]) [i] based on
- adding a parity check bit [i] based on linear OA(2102, 532, F2, 22) (dual of [532, 430, 23]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2104, 267, F2, 2, 22) (dual of [(267, 2), 430, 23]-NRT-code) | [i] | Strength Reduction for OOAs | |
2 | Linear OOA(2106, 268, F2, 2, 23) (dual of [(268, 2), 430, 24]-NRT-code) | [i] | NRT-Code Embedding in Larger Space | |
3 | Linear OOA(2105, 267, F2, 2, 23) (dual of [(267, 2), 429, 24]-NRT-code) | [i] | OOA Duplication | |
4 | Linear OOA(2104, 258, F2, 3, 23) (dual of [(258, 3), 670, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
5 | Linear OOA(2104, 258, F2, 4, 23) (dual of [(258, 4), 928, 24]-NRT-code) | [i] | ||
6 | Linear OOA(2104, 258, F2, 5, 23) (dual of [(258, 5), 1186, 24]-NRT-code) | [i] | ||
7 | Linear OOA(2104, 258, F2, 6, 23) (dual of [(258, 6), 1444, 24]-NRT-code) | [i] | ||
8 | Linear OOA(2104, 258, F2, 7, 23) (dual of [(258, 7), 1702, 24]-NRT-code) | [i] | ||
9 | Linear OOA(2104, 258, F2, 8, 23) (dual of [(258, 8), 1960, 24]-NRT-code) | [i] | ||
10 | Digital (81, 104, 258)-net over F2 | [i] |