Information on Result #893999
Linear OOA(7106, 5764804, F7, 2, 14) (dual of [(5764804, 2), 11529502, 15]-NRT-code), using trace code based on linear OOA(4953, 2882402, F49, 2, 14) (dual of [(2882402, 2), 5764751, 15]-NRT-code), using
- OOA 2-folding [i] based on linear OA(4953, 5764804, F49, 14) (dual of [5764804, 5764751, 15]-code), using
- discarding factors / shortening the dual code based on linear OA(4953, 5764805, F49, 14) (dual of [5764805, 5764752, 15]-code), using
- construction X applied to Ce(13) ⊂ Ce(12) [i] based on
- linear OA(4953, 5764801, F49, 14) (dual of [5764801, 5764748, 15]-code), using an extension Ce(13) of the primitive narrow-sense BCH-code C(I) with length 5764800 = 494−1, defining interval I = [1,13], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(4949, 5764801, F49, 13) (dual of [5764801, 5764752, 14]-code), using an extension Ce(12) of the primitive narrow-sense BCH-code C(I) with length 5764800 = 494−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(490, 4, F49, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(490, s, F49, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(13) ⊂ Ce(12) [i] based on
- discarding factors / shortening the dual code based on linear OA(4953, 5764805, F49, 14) (dual of [5764805, 5764752, 15]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(7107, 5764804, F7, 2, 14) (dual of [(5764804, 2), 11529501, 15]-NRT-code) | [i] | OOA Duplication | |
2 | Linear OOA(7106, 2882402, F7, 3, 14) (dual of [(2882402, 3), 8647100, 15]-NRT-code) | [i] | OOA Folding | |
3 | Linear OOA(7106, 1441200, F7, 18, 14) (dual of [(1441200, 18), 25941494, 15]-NRT-code) | [i] | OOA Folding and Stacking with Additional Row |