Information on Result #899556

Linear OOA(2538, 380, F25, 2, 14) (dual of [(380, 2), 722, 15]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(2511, 66, F25, 2, 7) (dual of [(66, 2), 121, 8]-NRT-code), using
  2. linear OOA(2527, 314, F25, 2, 14) (dual of [(314, 2), 601, 15]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(2527, 628, F25, 14) (dual of [628, 601, 15]-code), using
      • construction XX applied to C1 = C([623,11]), C2 = C([0,12]), C3 = C1 + C2 = C([0,11]), and C∩ = C1 ∩ C2 = C([623,12]) [i] based on
        1. linear OA(2525, 624, F25, 13) (dual of [624, 599, 14]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
        2. linear OA(2525, 624, F25, 13) (dual of [624, 599, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
        3. linear OA(2527, 624, F25, 14) (dual of [624, 597, 15]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,12}, and designed minimum distance d ≥ |I|+1 = 15 [i]
        4. linear OA(2523, 624, F25, 12) (dual of [624, 601, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
        5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
        6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.