Information on Result #899814
Linear OOA(2583, 195343, F25, 2, 19) (dual of [(195343, 2), 390603, 20]-NRT-code), using (u, u+v)-construction based on
- linear OOA(259, 26, F25, 2, 9) (dual of [(26, 2), 43, 10]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;43,25) [i]
- linear OOA(2574, 195317, F25, 2, 19) (dual of [(195317, 2), 390560, 20]-NRT-code), using
- OOA 2-folding [i] based on linear OA(2574, 390634, F25, 19) (dual of [390634, 390560, 20]-code), using
- discarding factors / shortening the dual code based on linear OA(2574, 390635, F25, 19) (dual of [390635, 390561, 20]-code), using
- construction X applied to C([0,9]) ⊂ C([0,8]) [i] based on
- linear OA(2573, 390626, F25, 19) (dual of [390626, 390553, 20]-code), using the expurgated narrow-sense BCH-code C(I) with length 390626 | 258−1, defining interval I = [0,9], and minimum distance d ≥ |{−9,−8,…,9}|+1 = 20 (BCH-bound) [i]
- linear OA(2565, 390626, F25, 17) (dual of [390626, 390561, 18]-code), using the expurgated narrow-sense BCH-code C(I) with length 390626 | 258−1, defining interval I = [0,8], and minimum distance d ≥ |{−8,−7,…,8}|+1 = 18 (BCH-bound) [i]
- linear OA(251, 9, F25, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(251, s, F25, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- construction X applied to C([0,9]) ⊂ C([0,8]) [i] based on
- discarding factors / shortening the dual code based on linear OA(2574, 390635, F25, 19) (dual of [390635, 390561, 20]-code), using
- OOA 2-folding [i] based on linear OA(2574, 390634, F25, 19) (dual of [390634, 390560, 20]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.