Information on Result #899901

Linear OOA(2562, 392, F25, 2, 22) (dual of [(392, 2), 722, 23]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(2519, 78, F25, 2, 11) (dual of [(78, 2), 137, 12]-NRT-code), using
  2. linear OOA(2543, 314, F25, 2, 22) (dual of [(314, 2), 585, 23]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(2543, 628, F25, 22) (dual of [628, 585, 23]-code), using
      • construction XX applied to C1 = C([623,19]), C2 = C([0,20]), C3 = C1 + C2 = C([0,19]), and C∩ = C1 ∩ C2 = C([623,20]) [i] based on
        1. linear OA(2541, 624, F25, 21) (dual of [624, 583, 22]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,19}, and designed minimum distance d ≥ |I|+1 = 22 [i]
        2. linear OA(2541, 624, F25, 21) (dual of [624, 583, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
        3. linear OA(2543, 624, F25, 22) (dual of [624, 581, 23]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,20}, and designed minimum distance d ≥ |I|+1 = 23 [i]
        4. linear OA(2539, 624, F25, 20) (dual of [624, 585, 21]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,19], and designed minimum distance d ≥ |I|+1 = 21 [i]
        5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
        6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.