Information on Result #902334
Linear OOA(32102, 524367, F32, 2, 22) (dual of [(524367, 2), 1048632, 23]-NRT-code), using (u, u+v)-construction based on
- linear OOA(3217, 77, F32, 2, 11) (dual of [(77, 2), 137, 12]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(325, 33, F32, 2, 5) (dual of [(33, 2), 61, 6]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(2;61,32) [i]
- linear OOA(3212, 44, F32, 2, 11) (dual of [(44, 2), 76, 12]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(2;F,76P) [i] based on function field F/F32 with g(F) = 1 and N(F) ≥ 44, using
- linear OOA(325, 33, F32, 2, 5) (dual of [(33, 2), 61, 6]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(3285, 524290, F32, 2, 22) (dual of [(524290, 2), 1048495, 23]-NRT-code), using
- OOA 2-folding [i] based on linear OA(3285, 1048580, F32, 22) (dual of [1048580, 1048495, 23]-code), using
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
- linear OA(3285, 1048576, F32, 22) (dual of [1048576, 1048491, 23]-code), using an extension Ce(21) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,21], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(3281, 1048576, F32, 21) (dual of [1048576, 1048495, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 1048575 = 324−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21 [i]
- linear OA(320, 4, F32, 0) (dual of [4, 4, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- construction X applied to Ce(21) ⊂ Ce(20) [i] based on
- OOA 2-folding [i] based on linear OA(3285, 1048580, F32, 22) (dual of [1048580, 1048495, 23]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.