Information on Result #946455
Linear OOA(2132, 682, F2, 3, 24) (dual of [(682, 3), 1914, 25]-NRT-code), using OOA 3-folding based on linear OA(2132, 2046, F2, 24) (dual of [2046, 1914, 25]-code), using
- discarding factors / shortening the dual code based on linear OA(2132, 2048, F2, 24) (dual of [2048, 1916, 25]-code), using
- 1 times truncation [i] based on linear OA(2133, 2049, F2, 25) (dual of [2049, 1916, 26]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2049 | 222−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- 1 times truncation [i] based on linear OA(2133, 2049, F2, 25) (dual of [2049, 1916, 26]-code), using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2132, 682, F2, 4, 24) (dual of [(682, 4), 2596, 25]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(2132, 682, F2, 5, 24) (dual of [(682, 5), 3278, 25]-NRT-code) | [i] | ||
3 | Linear OOA(2132, 682, F2, 6, 24) (dual of [(682, 6), 3960, 25]-NRT-code) | [i] | ||
4 | Linear OOA(2132, 682, F2, 7, 24) (dual of [(682, 7), 4642, 25]-NRT-code) | [i] | ||
5 | Linear OOA(2132, 682, F2, 8, 24) (dual of [(682, 8), 5324, 25]-NRT-code) | [i] | ||
6 | Digital (108, 132, 682)-net over F2 | [i] |