Best Known (49−10, 49, s)-Nets in Base 128
(49−10, 49, 1710233)-Net over F128 — Constructive and digital
Digital (39, 49, 1710233)-net over F128, using
- (u, u+v)-construction [i] based on
- digital (7, 12, 32513)-net over F128, using
- net defined by OOA [i] based on linear OOA(12812, 32513, F128, 5, 5) (dual of [(32513, 5), 162553, 6]-NRT-code), using
- appending kth column [i] based on linear OOA(12812, 32513, F128, 4, 5) (dual of [(32513, 4), 130040, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(12812, 65027, F128, 5) (dual of [65027, 65015, 6]-code), using
- discarding factors / shortening the dual code based on linear OA(12812, 65028, F128, 5) (dual of [65028, 65016, 6]-code), using
- generalized (u, u+v)-construction [i] based on
- linear OA(1281, 16257, F128, 1) (dual of [16257, 16256, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(1281, s, F128, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- linear OA(1281, 16257, F128, 1) (dual of [16257, 16256, 2]-code) (see above)
- linear OA(1283, 16257, F128, 2) (dual of [16257, 16254, 3]-code), using
- discarding factors / shortening the dual code based on linear OA(1283, 16513, F128, 2) (dual of [16513, 16510, 3]-code), using
- Hamming code H(3,128) [i]
- discarding factors / shortening the dual code based on linear OA(1283, 16513, F128, 2) (dual of [16513, 16510, 3]-code), using
- linear OA(1287, 16257, F128, 5) (dual of [16257, 16250, 6]-code), using
- linear OA(1281, 16257, F128, 1) (dual of [16257, 16256, 2]-code), using
- generalized (u, u+v)-construction [i] based on
- discarding factors / shortening the dual code based on linear OA(12812, 65028, F128, 5) (dual of [65028, 65016, 6]-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(12812, 65027, F128, 5) (dual of [65027, 65015, 6]-code), using
- appending kth column [i] based on linear OOA(12812, 32513, F128, 4, 5) (dual of [(32513, 4), 130040, 6]-NRT-code), using
- net defined by OOA [i] based on linear OOA(12812, 32513, F128, 5, 5) (dual of [(32513, 5), 162553, 6]-NRT-code), using
- digital (27, 37, 1677720)-net over F128, using
- net defined by OOA [i] based on linear OOA(12837, 1677720, F128, 10, 10) (dual of [(1677720, 10), 16777163, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(12837, 8388600, F128, 10) (dual of [8388600, 8388563, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(12837, large, F128, 10) (dual of [large, large−37, 11]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 9256395 | 1284−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- discarding factors / shortening the dual code based on linear OA(12837, large, F128, 10) (dual of [large, large−37, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(12837, 8388600, F128, 10) (dual of [8388600, 8388563, 11]-code), using
- net defined by OOA [i] based on linear OOA(12837, 1677720, F128, 10, 10) (dual of [(1677720, 10), 16777163, 11]-NRT-code), using
- digital (7, 12, 32513)-net over F128, using
(49−10, 49, 3355648)-Net in Base 128 — Constructive
(39, 49, 3355648)-net in base 128, using
- 1281 times duplication [i] based on (38, 48, 3355648)-net in base 128, using
- base change [i] based on digital (32, 42, 3355648)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 13108)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (1, 3, 13108)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 13108)-net over F256 (see above)
- digital (1, 4, 13108)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 13108)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (10, 20, 13108)-net over F256, using
- net defined by OOA [i] based on linear OOA(25620, 13108, F256, 10, 10) (dual of [(13108, 10), 131060, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(25620, 65540, F256, 10) (dual of [65540, 65520, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(25620, 65541, F256, 10) (dual of [65541, 65521, 11]-code), using
- construction X applied to Ce(9) ⊂ Ce(7) [i] based on
- linear OA(25619, 65536, F256, 10) (dual of [65536, 65517, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(2561, 5, F256, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- construction X applied to Ce(9) ⊂ Ce(7) [i] based on
- discarding factors / shortening the dual code based on linear OA(25620, 65541, F256, 10) (dual of [65541, 65521, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(25620, 65540, F256, 10) (dual of [65540, 65520, 11]-code), using
- net defined by OOA [i] based on linear OOA(25620, 13108, F256, 10, 10) (dual of [(13108, 10), 131060, 11]-NRT-code), using
- digital (0, 0, 13108)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- base change [i] based on digital (32, 42, 3355648)-net over F256, using
(49−10, 49, large)-Net over F128 — Digital
Digital (39, 49, large)-net over F128, using
- t-expansion [i] based on digital (38, 49, large)-net over F128, using
- 3 times m-reduction [i] based on digital (38, 52, large)-net over F128, using
(49−10, 49, large)-Net in Base 128 — Upper bound on s
There is no (39, 49, large)-net in base 128, because
- 8 times m-reduction [i] would yield (39, 41, large)-net in base 128, but