Best Known (77−8, 77, s)-Nets in Base 128
(77−8, 77, large)-Net over F128 — Constructive and digital
Digital (69, 77, large)-net over F128, using
- 12813 times duplication [i] based on digital (56, 64, large)-net over F128, using
- t-expansion [i] based on digital (53, 64, large)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 419430)-net over F128, using
- s-reduction based on digital (0, 0, s)-net over F128 with arbitrarily large s, using
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 0, 419430)-net over F128 (see above)
- digital (0, 1, 419430)-net over F128, using
- s-reduction based on digital (0, 1, s)-net over F128 with arbitrarily large s, using
- digital (0, 1, 419430)-net over F128 (see above)
- digital (0, 1, 419430)-net over F128 (see above)
- digital (0, 1, 419430)-net over F128 (see above)
- digital (0, 1, 419430)-net over F128 (see above)
- digital (0, 1, 419430)-net over F128 (see above)
- digital (2, 4, 419430)-net over F128, using
- s-reduction based on digital (2, 4, 2113665)-net over F128, using
- digital (2, 4, 419430)-net over F128 (see above)
- digital (3, 6, 419430)-net over F128, using
- s-reduction based on digital (3, 6, 2130050)-net over F128, using
- net defined by OOA [i] based on linear OOA(1286, 2130050, F128, 3, 3) (dual of [(2130050, 3), 6390144, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(1286, 2130050, F128, 2, 3) (dual of [(2130050, 2), 4260094, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(1286, 2130050, F128, 3, 3) (dual of [(2130050, 3), 6390144, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 2130050)-net over F128, using
- digital (8, 13, 419430)-net over F128, using
- s-reduction based on digital (8, 13, 1048577)-net over F128, using
- net defined by OOA [i] based on linear OOA(12813, 1048577, F128, 5, 5) (dual of [(1048577, 5), 5242872, 6]-NRT-code), using
- appending kth column [i] based on linear OOA(12813, 1048577, F128, 4, 5) (dual of [(1048577, 4), 4194295, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- linear OA(12813, 2097152, F128, 5) (dual of [2097152, 2097139, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(4) ⊂ Ce(3) [i] based on
- OOA 2-folding and stacking with additional row [i] based on linear OA(12813, 2097155, F128, 5) (dual of [2097155, 2097142, 6]-code), using
- appending kth column [i] based on linear OOA(12813, 1048577, F128, 4, 5) (dual of [(1048577, 4), 4194295, 6]-NRT-code), using
- net defined by OOA [i] based on linear OOA(12813, 1048577, F128, 5, 5) (dual of [(1048577, 5), 5242872, 6]-NRT-code), using
- s-reduction based on digital (8, 13, 1048577)-net over F128, using
- digital (20, 31, 419430)-net over F128, using
- net defined by OOA [i] based on linear OOA(12831, 419430, F128, 11, 11) (dual of [(419430, 11), 4613699, 12]-NRT-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(12831, 2097151, F128, 11) (dual of [2097151, 2097120, 12]-code), using
- discarding factors / shortening the dual code based on linear OA(12831, 2097152, F128, 11) (dual of [2097152, 2097121, 12]-code), using
- an extension Ce(10) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- discarding factors / shortening the dual code based on linear OA(12831, 2097152, F128, 11) (dual of [2097152, 2097121, 12]-code), using
- OOA 5-folding and stacking with additional row [i] based on linear OA(12831, 2097151, F128, 11) (dual of [2097151, 2097120, 12]-code), using
- net defined by OOA [i] based on linear OOA(12831, 419430, F128, 11, 11) (dual of [(419430, 11), 4613699, 12]-NRT-code), using
- digital (0, 0, 419430)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- t-expansion [i] based on digital (53, 64, large)-net over F128, using
(77−8, 77, large)-Net in Base 128 — Upper bound on s
There is no (69, 77, large)-net in base 128, because
- 6 times m-reduction [i] would yield (69, 71, large)-net in base 128, but