Best Known (8, 14, s)-Nets in Base 128
(8, 14, 16512)-Net over F128 — Constructive and digital
Digital (8, 14, 16512)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 129)-net over F128, using
- s-reduction based on digital (0, 0, s)-net over F128 with arbitrarily large s, using
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128, using
- s-reduction based on digital (0, 1, s)-net over F128 with arbitrarily large s, using
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 2, 129)-net over F128, using
- digital (0, 3, 129)-net over F128, using
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 0 and N(F) ≥ 129, using
- the rational function field F128(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- digital (0, 6, 129)-net over F128, using
- net from sequence [i] based on digital (0, 128)-sequence over F128 (see above)
- digital (0, 0, 129)-net over F128, using
(8, 14, 16516)-Net over F128 — Digital
Digital (8, 14, 16516)-net over F128, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(12814, 16516, F128, 6) (dual of [16516, 16502, 7]-code), using
- (u, u+v)-construction [i] based on
- linear OA(1283, 130, F128, 3) (dual of [130, 127, 4]-code or 130-arc in PG(2,128) or 130-cap in PG(2,128)), using
- linear OA(12811, 16386, F128, 6) (dual of [16386, 16375, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- linear OA(12811, 16384, F128, 6) (dual of [16384, 16373, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 16383 = 1282−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(1289, 16384, F128, 5) (dual of [16384, 16375, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 16383 = 1282−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(1280, 2, F128, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- (u, u+v)-construction [i] based on
(8, 14, 21847)-Net in Base 128 — Constructive
(8, 14, 21847)-net in base 128, using
- net defined by OOA [i] based on OOA(12814, 21847, S128, 6, 6), using
- OA 3-folding and stacking [i] based on OA(12814, 65541, S128, 6), using
- discarding parts of the base [i] based on linear OA(25612, 65541, F256, 6) (dual of [65541, 65529, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(3) [i] based on
- linear OA(25611, 65536, F256, 6) (dual of [65536, 65525, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(2567, 65536, F256, 4) (dual of [65536, 65529, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(2561, 5, F256, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- construction X applied to Ce(5) ⊂ Ce(3) [i] based on
- discarding parts of the base [i] based on linear OA(25612, 65541, F256, 6) (dual of [65541, 65529, 7]-code), using
- OA 3-folding and stacking [i] based on OA(12814, 65541, S128, 6), using
(8, 14, 36404)-Net in Base 128
(8, 14, 36404)-net in base 128, using
- net defined by OOA [i] based on OOA(12814, 36404, S128, 9, 6), using
- OOA stacking with additional row [i] based on OOA(12814, 36405, S128, 3, 6), using
- discarding parts of the base [i] based on linear OOA(25612, 36405, F256, 3, 6) (dual of [(36405, 3), 109203, 7]-NRT-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(25612, 36405, F256, 6) (dual of [36405, 36393, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(25612, 65541, F256, 6) (dual of [65541, 65529, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(3) [i] based on
- linear OA(25611, 65536, F256, 6) (dual of [65536, 65525, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(2567, 65536, F256, 4) (dual of [65536, 65529, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(2561, 5, F256, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- construction X applied to Ce(5) ⊂ Ce(3) [i] based on
- discarding factors / shortening the dual code based on linear OA(25612, 65541, F256, 6) (dual of [65541, 65529, 7]-code), using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(25612, 36405, F256, 6) (dual of [36405, 36393, 7]-code), using
- discarding parts of the base [i] based on linear OOA(25612, 36405, F256, 3, 6) (dual of [(36405, 3), 109203, 7]-NRT-code), using
- OOA stacking with additional row [i] based on OOA(12814, 36405, S128, 3, 6), using
(8, 14, large)-Net in Base 128 — Upper bound on s
There is no (8, 14, large)-net in base 128, because
- 4 times m-reduction [i] would yield (8, 10, large)-net in base 128, but