Best Known (41, 69, s)-Nets in Base 16
(41, 69, 526)-Net over F16 — Constructive and digital
Digital (41, 69, 526)-net over F16, using
- 1 times m-reduction [i] based on digital (41, 70, 526)-net over F16, using
- trace code for nets [i] based on digital (6, 35, 263)-net over F256, using
- net from sequence [i] based on digital (6, 262)-sequence over F256, using
- trace code for nets [i] based on digital (6, 35, 263)-net over F256, using
(41, 69, 884)-Net over F16 — Digital
Digital (41, 69, 884)-net over F16, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(1669, 884, F16, 28) (dual of [884, 815, 29]-code), using
- 814 step Varšamov–Edel lengthening with (ri) = (3, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 9 times 0, 1, 10 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 18 times 0, 1, 21 times 0, 1, 22 times 0, 1, 26 times 0, 1, 28 times 0, 1, 32 times 0, 1, 35 times 0, 1, 39 times 0, 1, 44 times 0, 1, 49 times 0, 1, 54 times 0, 1, 61 times 0, 1, 67 times 0, 1, 75 times 0, 1, 83 times 0) [i] based on linear OA(1628, 29, F16, 28) (dual of [29, 1, 29]-code or 29-arc in PG(27,16)), using
- dual of repetition code with length 29 [i]
- 814 step Varšamov–Edel lengthening with (ri) = (3, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 9 times 0, 1, 10 times 0, 1, 12 times 0, 1, 13 times 0, 1, 14 times 0, 1, 16 times 0, 1, 18 times 0, 1, 21 times 0, 1, 22 times 0, 1, 26 times 0, 1, 28 times 0, 1, 32 times 0, 1, 35 times 0, 1, 39 times 0, 1, 44 times 0, 1, 49 times 0, 1, 54 times 0, 1, 61 times 0, 1, 67 times 0, 1, 75 times 0, 1, 83 times 0) [i] based on linear OA(1628, 29, F16, 28) (dual of [29, 1, 29]-code or 29-arc in PG(27,16)), using
(41, 69, 346695)-Net in Base 16 — Upper bound on s
There is no (41, 69, 346696)-net in base 16, because
- the generalized Rao bound for nets shows that 16m ≥ 121418 053898 842014 837403 803367 584841 537427 174947 791813 379328 964602 940389 411978 658136 > 1669 [i]