Best Known (7, 92, s)-Nets in Base 16
(7, 92, 65)-Net over F16 — Constructive and digital
Digital (7, 92, 65)-net over F16, using
- t-expansion [i] based on digital (6, 92, 65)-net over F16, using
- net from sequence [i] based on digital (6, 64)-sequence over F16, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- the Hermitian function field over F16 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F16 with g(F) = 6 and N(F) ≥ 65, using
- net from sequence [i] based on digital (6, 64)-sequence over F16, using
(7, 92, 224)-Net in Base 16 — Upper bound on s
There is no (7, 92, 225)-net in base 16, because
- extracting embedded orthogonal array [i] would yield OA(1692, 225, S16, 85), but
- the linear programming bound shows that M ≥ 76 339033 263980 522709 600049 239497 157018 981014 575659 452468 946110 870063 430301 738048 379420 761307 784994 116578 003211 731870 408901 912635 096117 762857 868233 436797 664968 236393 910149 779642 384384 / 126386 712529 047278 063600 082249 133569 850695 106567 907605 492703 303017 484027 > 1692 [i]