Best Known (186−24, 186, s)-Nets in Base 2
(186−24, 186, 2733)-Net over F2 — Constructive and digital
Digital (162, 186, 2733)-net over F2, using
- net defined by OOA [i] based on linear OOA(2186, 2733, F2, 24, 24) (dual of [(2733, 24), 65406, 25]-NRT-code), using
- OA 12-folding and stacking [i] based on linear OA(2186, 32796, F2, 24) (dual of [32796, 32610, 25]-code), using
- discarding factors / shortening the dual code based on linear OA(2186, 32800, F2, 24) (dual of [32800, 32614, 25]-code), using
- 1 times truncation [i] based on linear OA(2187, 32801, F2, 25) (dual of [32801, 32614, 26]-code), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- linear OA(2181, 32769, F2, 25) (dual of [32769, 32588, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 230−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(2151, 32769, F2, 21) (dual of [32769, 32618, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 230−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- 1 times truncation [i] based on linear OA(2187, 32801, F2, 25) (dual of [32801, 32614, 26]-code), using
- discarding factors / shortening the dual code based on linear OA(2186, 32800, F2, 24) (dual of [32800, 32614, 25]-code), using
- OA 12-folding and stacking [i] based on linear OA(2186, 32796, F2, 24) (dual of [32796, 32610, 25]-code), using
(186−24, 186, 6560)-Net over F2 — Digital
Digital (162, 186, 6560)-net over F2, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(2186, 6560, F2, 5, 24) (dual of [(6560, 5), 32614, 25]-NRT-code), using
- OOA 5-folding [i] based on linear OA(2186, 32800, F2, 24) (dual of [32800, 32614, 25]-code), using
- 1 times truncation [i] based on linear OA(2187, 32801, F2, 25) (dual of [32801, 32614, 26]-code), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- linear OA(2181, 32769, F2, 25) (dual of [32769, 32588, 26]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 230−1, defining interval I = [0,12], and minimum distance d ≥ |{−12,−11,…,12}|+1 = 26 (BCH-bound) [i]
- linear OA(2151, 32769, F2, 21) (dual of [32769, 32618, 22]-code), using the expurgated narrow-sense BCH-code C(I) with length 32769 | 230−1, defining interval I = [0,10], and minimum distance d ≥ |{−10,−9,…,10}|+1 = 22 (BCH-bound) [i]
- linear OA(26, 32, F2, 3) (dual of [32, 26, 4]-code or 32-cap in PG(5,2)), using
- construction X applied to C([0,12]) ⊂ C([0,10]) [i] based on
- 1 times truncation [i] based on linear OA(2187, 32801, F2, 25) (dual of [32801, 32614, 26]-code), using
- OOA 5-folding [i] based on linear OA(2186, 32800, F2, 24) (dual of [32800, 32614, 25]-code), using
(186−24, 186, 245072)-Net in Base 2 — Upper bound on s
There is no (162, 186, 245073)-net in base 2, because
- the generalized Rao bound for nets shows that 2m ≥ 98 080067 853167 463189 132353 203895 422768 429127 856591 563468 > 2186 [i]