Best Known (99, 99+75, s)-Nets in Base 2
(99, 99+75, 56)-Net over F2 — Constructive and digital
Digital (99, 174, 56)-net over F2, using
- trace code for nets [i] based on digital (12, 87, 28)-net over F4, using
- net from sequence [i] based on digital (12, 27)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 12 and N(F) ≥ 28, using
- net from sequence [i] based on digital (12, 27)-sequence over F4, using
(99, 99+75, 69)-Net over F2 — Digital
Digital (99, 174, 69)-net over F2, using
(99, 99+75, 295)-Net in Base 2 — Upper bound on s
There is no (99, 174, 296)-net in base 2, because
- 1 times m-reduction [i] would yield (99, 173, 296)-net in base 2, but
- extracting embedded orthogonal array [i] would yield OA(2173, 296, S2, 74), but
- 3 times code embedding in larger space [i] would yield OA(2176, 299, S2, 74), but
- adding a parity check bit [i] would yield OA(2177, 300, S2, 75), but
- the linear programming bound shows that M ≥ 3 635392 612138 849947 593748 250106 276323 244402 593086 652587 881083 736015 264809 747844 602393 772282 952895 309564 287520 927482 512784 061552 651238 260008 282439 847339 186197 936622 918149 603328 / 16 596489 288891 597431 806767 668273 879726 323125 162254 820959 724017 639569 206174 043207 555202 380507 742012 504078 557367 932811 307081 > 2177 [i]
- adding a parity check bit [i] would yield OA(2177, 300, S2, 75), but
- 3 times code embedding in larger space [i] would yield OA(2176, 299, S2, 74), but
- extracting embedded orthogonal array [i] would yield OA(2173, 296, S2, 74), but