Best Known (220, s)-Sequences in Base 2
(220, 74)-Sequence over F2 — Constructive and digital
Digital (220, 74)-sequence over F2, using
- base reduction for sequences [i] based on digital (73, 74)-sequence over F4, using
- s-reduction based on digital (73, 103)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 73 and N(F) ≥ 104, using
- F6 from the tower of function fields by GarcÃa and Stichtenoth over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 73 and N(F) ≥ 104, using
- s-reduction based on digital (73, 103)-sequence over F4, using
(220, 128)-Sequence over F2 — Digital
Digital (220, 128)-sequence over F2, using
- t-expansion [i] based on digital (215, 128)-sequence over F2, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F2 with g(F) = 215 and N(F) ≥ 129, using
(220, 230)-Sequence in Base 2 — Upper bound on s
There is no (220, 231)-sequence in base 2, because
- net from sequence [i] would yield (220, m, 232)-net in base 2 for arbitrarily large m, but
- m-reduction [i] would yield (220, 1845, 232)-net in base 2, but
- extracting embedded OOA [i] would yield OOA(21845, 232, S2, 8, 1625), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 2 815529 115230 995402 800974 757543 658279 064456 013710 396289 186385 089948 125716 985757 390400 700805 753670 422349 148533 956187 209524 874289 624878 586979 183478 571856 881751 551261 738780 168627 888518 078936 818173 498580 381807 696539 847043 792602 603546 190699 298016 711192 162823 953144 990070 533409 944446 955875 616175 089007 292207 475814 213691 731410 479447 515298 849607 886726 438449 252593 289233 894045 875082 469536 345538 393685 798698 247912 891781 836184 959363 634613 851178 680091 468405 514232 582069 477407 666358 424237 625221 282777 389532 032377 667772 426357 747315 829251 106561 924704 395473 569800 764879 011840 / 813 > 21845 [i]
- extracting embedded OOA [i] would yield OOA(21845, 232, S2, 8, 1625), but
- m-reduction [i] would yield (220, 1845, 232)-net in base 2, but