Best Known (110−93, 110, s)-Nets in Base 25
(110−93, 110, 126)-Net over F25 — Constructive and digital
Digital (17, 110, 126)-net over F25, using
- t-expansion [i] based on digital (10, 110, 126)-net over F25, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- the Hermitian function field over F25 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
(110−93, 110, 150)-Net over F25 — Digital
Digital (17, 110, 150)-net over F25, using
- t-expansion [i] based on digital (16, 110, 150)-net over F25, using
- net from sequence [i] based on digital (16, 149)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 16 and N(F) ≥ 150, using
- net from sequence [i] based on digital (16, 149)-sequence over F25, using
(110−93, 110, 1514)-Net over F25 — Upper bound on s (digital)
There is no digital (17, 110, 1515)-net over F25, because
- 1 times m-reduction [i] would yield digital (17, 109, 1515)-net over F25, but
- extracting embedded orthogonal array [i] would yield linear OA(25109, 1515, F25, 92) (dual of [1515, 1406, 93]-code), but
- the Johnson bound shows that N ≤ 3159 970152 584940 557300 213008 257796 965350 354720 332821 226349 249733 790793 304263 171160 969040 090516 982406 403332 429823 000548 168631 423632 725836 382579 765168 610843 271277 878897 365330 685938 431707 763676 719638 442024 047263 687619 259295 394762 323400 970912 942666 180827 858315 866494 638981 276771 264442 102432 819584 203731 762582 579454 418994 054664 801955 680735 960829 099570 000077 984016 293363 406998 811182 678601 487500 278904 198567 921192 066358 240845 489533 951562 198332 775670 762711 810527 054251 907679 363821 323877 080908 863356 630630 998560 993423 894202 434706 083134 900550 331067 354934 011630 693741 354839 117292 484323 366674 277772 040592 970357 166212 054887 793921 080052 680412 971630 151274 956811 545481 259472 373410 601329 617912 853220 001653 757192 915369 613468 329755 730768 339961 747919 280036 034849 660425 722824 061790 920157 887009 680546 073095 998513 206487 067640 195646 477081 063384 134278 039554 070118 538065 099565 732438 789980 453610 259138 013996 743623 505660 944369 930633 170279 601356 331946 247007 693331 504936 201275 637951 816500 458910 358478 013088 731087 086038 141636 285026 224564 896305 240288 254775 791460 989035 332175 592014 886995 597947 702371 495872 192096 153730 486789 712629 448784 424202 478898 404176 581349 516110 175172 788117 794821 087184 477792 192944 815577 498555 771802 642101 610307 054181 838342 567829 170413 665420 072270 186125 383314 887641 255957 943992 581247 395731 892110 933731 089507 785648 571037 526752 163192 528875 690977 001199 669527 429243 072734 128893 384961 750701 947497 452831 874667 061810 884273 549406 976711 484133 564573 441692 266067 153671 332504 686245 760570 195511 213542 448904 001193 496560 262909 589377 951031 287906 192510 647117 003373 629599 750836 738546 499461 111902 677738 977073 927853 726055 803654 798493 788701 996066 506486 185771 758962 138864 535902 010735 571430 444861 484393 106283 202066 961605 648215 433847 925189 947252 031386 290242 142603 691616 404176 763334 587356 816965 561478 533997 900159 833782 575638 712711 861306 463600 412232 115840 386097 616333 194772 849178 038430 952131 139670 828232 361191 918499 694679 580147 470637 623293 616131 114023 343274 411765 690922 715280 455197 839590 086122 294278 956087 < 251406 [i]
- extracting embedded orthogonal array [i] would yield linear OA(25109, 1515, F25, 92) (dual of [1515, 1406, 93]-code), but
(110−93, 110, 1515)-Net in Base 25 — Upper bound on s
There is no (17, 110, 1516)-net in base 25, because
- 1 times m-reduction [i] would yield (17, 109, 1516)-net in base 25, but
- the generalized Rao bound for nets shows that 25m ≥ 239 545849 263403 811317 268868 323455 272995 496960 465132 993458 601712 612948 047949 311610 244978 135556 931234 795452 065148 123414 901197 794329 504979 808494 965537 986625 > 25109 [i]