Best Known (10, 10+∞, s)-Nets in Base 25
(10, 10+∞, 126)-Net over F25 — Constructive and digital
Digital (10, m, 126)-net over F25 for arbitrarily large m, using
- net from sequence [i] based on digital (10, 125)-sequence over F25, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
- the Hermitian function field over F25 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 10 and N(F) ≥ 126, using
(10, 10+∞, 286)-Net in Base 25 — Upper bound on s
There is no (10, m, 287)-net in base 25 for arbitrarily large m, because
- m-reduction [i] would yield (10, 285, 287)-net in base 25, but
- extracting embedded OOA [i] would yield OA(25285, 287, S25, 275), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 6469 079379 123511 850608 959253 500681 652549 318275 021237 185817 417289 854130 966571 010758 738176 785881 772958 149072 905213 585687 201314 981891 625297 220632 458154 020234 714320 619622 273165 151469 385340 000264 938057 356190 579068 248481 231348 229008 894165 664450 926457 615684 195236 616161 944604 699521 025409 807002 548235 124849 759738 885839 625606 530123 435901 253282 196935 496691 137500 247848 791945 504132 172573 008574 545383 453369 140625 / 23 > 25285 [i]
- extracting embedded OOA [i] would yield OA(25285, 287, S25, 275), but