Best Known (4, 8, s)-Nets in Base 25
(4, 8, 650)-Net over F25 — Constructive and digital
Digital (4, 8, 650)-net over F25, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 26)-net over F25, using
- s-reduction based on digital (0, 0, s)-net over F25 with arbitrarily large s, using
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 0, 26)-net over F25 (see above)
- digital (0, 1, 26)-net over F25, using
- s-reduction based on digital (0, 1, s)-net over F25 with arbitrarily large s, using
- digital (0, 1, 26)-net over F25 (see above)
- digital (0, 2, 26)-net over F25, using
- digital (0, 4, 26)-net over F25, using
- net from sequence [i] based on digital (0, 25)-sequence over F25, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F25 with g(F) = 0 and N(F) ≥ 26, using
- the rational function field F25(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 25)-sequence over F25, using
- digital (0, 0, 26)-net over F25, using
(4, 8, 678)-Net over F25 — Digital
Digital (4, 8, 678)-net over F25, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(258, 678, F25, 4) (dual of [678, 670, 5]-code), using
- 49 step Varšamov–Edel lengthening with (ri) = (1, 48 times 0) [i] based on linear OA(257, 628, F25, 4) (dual of [628, 621, 5]-code), using
- construction XX applied to C1 = C([623,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([623,2]) [i] based on
- linear OA(255, 624, F25, 3) (dual of [624, 619, 4]-code or 624-cap in PG(4,25)), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,1}, and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(255, 624, F25, 3) (dual of [624, 619, 4]-code or 624-cap in PG(4,25)), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(257, 624, F25, 4) (dual of [624, 617, 5]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(253, 624, F25, 2) (dual of [624, 621, 3]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,1], and designed minimum distance d ≥ |I|+1 = 3 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
- construction XX applied to C1 = C([623,1]), C2 = C([0,2]), C3 = C1 + C2 = C([0,1]), and C∩ = C1 ∩ C2 = C([623,2]) [i] based on
- 49 step Varšamov–Edel lengthening with (ri) = (1, 48 times 0) [i] based on linear OA(257, 628, F25, 4) (dual of [628, 621, 5]-code), using
(4, 8, 23017)-Net in Base 25 — Upper bound on s
There is no (4, 8, 23018)-net in base 25, because
- the generalized Rao bound for nets shows that 25m ≥ 152598 291361 > 258 [i]