Best Known (32, 32+10, s)-Nets in Base 256
(32, 32+10, 3355648)-Net over F256 — Constructive and digital
Digital (32, 42, 3355648)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 13108)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 0, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (0, 1, 13108)-net over F256 (see above)
- digital (1, 3, 13108)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 13108)-net over F256 (see above)
- digital (1, 4, 13108)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 13108)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (10, 20, 13108)-net over F256, using
- net defined by OOA [i] based on linear OOA(25620, 13108, F256, 10, 10) (dual of [(13108, 10), 131060, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(25620, 65540, F256, 10) (dual of [65540, 65520, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(25620, 65541, F256, 10) (dual of [65541, 65521, 11]-code), using
- construction X applied to Ce(9) ⊂ Ce(7) [i] based on
- linear OA(25619, 65536, F256, 10) (dual of [65536, 65517, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(2561, 5, F256, 1) (dual of [5, 4, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(2561, s, F256, 1) (dual of [s, s−1, 2]-code) with arbitrarily large s, using
- construction X applied to Ce(9) ⊂ Ce(7) [i] based on
- discarding factors / shortening the dual code based on linear OA(25620, 65541, F256, 10) (dual of [65541, 65521, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(25620, 65540, F256, 10) (dual of [65540, 65520, 11]-code), using
- net defined by OOA [i] based on linear OOA(25620, 13108, F256, 10, 10) (dual of [(13108, 10), 131060, 11]-NRT-code), using
- digital (0, 0, 13108)-net over F256, using
(32, 32+10, large)-Net over F256 — Digital
Digital (32, 42, large)-net over F256, using
- t-expansion [i] based on digital (30, 42, large)-net over F256, using
- 2 times m-reduction [i] based on digital (30, 44, large)-net over F256, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25644, large, F256, 14) (dual of [large, large−44, 15]-code), using
- 4 times code embedding in larger space [i] based on linear OA(25640, large, F256, 14) (dual of [large, large−40, 15]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15 [i]
- 4 times code embedding in larger space [i] based on linear OA(25640, large, F256, 14) (dual of [large, large−40, 15]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25644, large, F256, 14) (dual of [large, large−44, 15]-code), using
- 2 times m-reduction [i] based on digital (30, 44, large)-net over F256, using
(32, 32+10, large)-Net in Base 256 — Upper bound on s
There is no (32, 42, large)-net in base 256, because
- 8 times m-reduction [i] would yield (32, 34, large)-net in base 256, but