Best Known (53−34, 53, s)-Nets in Base 256
(53−34, 53, 516)-Net over F256 — Constructive and digital
Digital (19, 53, 516)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 18, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (1, 35, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256 (see above)
- digital (1, 18, 258)-net over F256, using
(53−34, 53, 578)-Net over F256 — Digital
Digital (19, 53, 578)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25653, 578, F256, 5, 34) (dual of [(578, 5), 2837, 35]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25618, 289, F256, 5, 17) (dual of [(289, 5), 1427, 18]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1427P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25635, 289, F256, 5, 34) (dual of [(289, 5), 1410, 35]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1410P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289 (see above)
- linear OOA(25618, 289, F256, 5, 17) (dual of [(289, 5), 1427, 18]-NRT-code), using
- (u, u+v)-construction [i] based on
(53−34, 53, 906657)-Net in Base 256 — Upper bound on s
There is no (19, 53, 906658)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 43 323117 903717 963518 244184 458683 804771 076245 792955 070446 005434 361683 126746 307793 911001 001898 649679 540449 079705 436730 551354 206706 > 25653 [i]