Best Known (21, 21+37, s)-Nets in Base 256
(21, 21+37, 517)-Net over F256 — Constructive and digital
Digital (21, 58, 517)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 19, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (2, 39, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- digital (1, 19, 258)-net over F256, using
(21, 21+37, 610)-Net over F256 — Digital
Digital (21, 58, 610)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25658, 610, F256, 5, 37) (dual of [(610, 5), 2992, 38]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25619, 289, F256, 5, 18) (dual of [(289, 5), 1426, 19]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1426P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25639, 321, F256, 5, 37) (dual of [(321, 5), 1566, 38]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1567P) [i] based on function field F/F256 with g(F) = 2 and N(F) ≥ 321, using
- linear OOA(25619, 289, F256, 5, 18) (dual of [(289, 5), 1426, 19]-NRT-code), using
- (u, u+v)-construction [i] based on
(21, 21+37, 1252218)-Net in Base 256 — Upper bound on s
There is no (21, 58, 1252219)-net in base 256, because
- 1 times m-reduction [i] would yield (21, 57, 1252219)-net in base 256, but
- the generalized Rao bound for nets shows that 256m ≥ 186071 961063 100002 341600 591467 347251 873066 666002 386050 555360 207210 301550 755409 419297 860048 522928 081029 973765 992369 432127 112321 625137 101961 > 25657 [i]