Best Known (22, 22+39, s)-Nets in Base 256
(22, 22+39, 517)-Net over F256 — Constructive and digital
Digital (22, 61, 517)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 20, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (2, 41, 259)-net over F256, using
- net from sequence [i] based on digital (2, 258)-sequence over F256, using
- digital (1, 20, 258)-net over F256, using
(22, 22+39, 610)-Net over F256 — Digital
Digital (22, 61, 610)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25661, 610, F256, 5, 39) (dual of [(610, 5), 2989, 40]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25620, 289, F256, 5, 19) (dual of [(289, 5), 1425, 20]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1425P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25641, 321, F256, 5, 39) (dual of [(321, 5), 1564, 40]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(5;F,1565P) [i] based on function field F/F256 with g(F) = 2 and N(F) ≥ 321, using
- linear OOA(25620, 289, F256, 5, 19) (dual of [(289, 5), 1425, 20]-NRT-code), using
- (u, u+v)-construction [i] based on
(22, 22+39, 1252104)-Net in Base 256 — Upper bound on s
There is no (22, 61, 1252105)-net in base 256, because
- 1 times m-reduction [i] would yield (22, 60, 1252105)-net in base 256, but
- the generalized Rao bound for nets shows that 256m ≥ 3 121784 038166 339939 153950 461859 949001 451563 623301 943853 415346 263686 080184 151225 746623 792986 897447 551942 540657 478373 951727 963688 384043 937142 990976 > 25660 [i]