Best Known (20, 20+40, s)-Nets in Base 256
(20, 20+40, 514)-Net over F256 — Constructive and digital
Digital (20, 60, 514)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (0, 20, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (0, 40, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 20, 257)-net over F256, using
(20, 20+40, 546359)-Net in Base 256 — Upper bound on s
There is no (20, 60, 546360)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 3 121829 588369 495894 677644 620164 485027 845653 859844 781537 069237 055923 475676 987481 517064 545095 596492 755318 233904 490409 051622 703080 602004 676392 653501 > 25660 [i]