Best Known (21, 59, s)-Nets in Base 256
(21, 59, 516)-Net over F256 — Constructive and digital
Digital (21, 59, 516)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 20, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (1, 39, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256 (see above)
- digital (1, 20, 258)-net over F256, using
(21, 59, 578)-Net over F256 — Digital
Digital (21, 59, 578)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25659, 578, F256, 6, 38) (dual of [(578, 6), 3409, 39]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25620, 289, F256, 6, 19) (dual of [(289, 6), 1714, 20]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1714P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25639, 289, F256, 6, 38) (dual of [(289, 6), 1695, 39]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1695P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289 (see above)
- linear OOA(25620, 289, F256, 6, 19) (dual of [(289, 6), 1714, 20]-NRT-code), using
- (u, u+v)-construction [i] based on
(21, 59, 935168)-Net in Base 256 — Upper bound on s
There is no (21, 59, 935169)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 12194 410576 756735 044950 078598 542583 831507 676213 525432 965350 386673 762218 250316 659398 228260 469867 901673 392592 030204 361704 259070 489701 600020 941056 > 25659 [i]