Best Known (22, 62, s)-Nets in Base 256
(22, 62, 516)-Net over F256 — Constructive and digital
Digital (22, 62, 516)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 21, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (1, 41, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256 (see above)
- digital (1, 21, 258)-net over F256, using
(22, 62, 578)-Net over F256 — Digital
Digital (22, 62, 578)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25662, 578, F256, 6, 40) (dual of [(578, 6), 3406, 41]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25621, 289, F256, 6, 20) (dual of [(289, 6), 1713, 21]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1713P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25641, 289, F256, 6, 40) (dual of [(289, 6), 1693, 41]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1693P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289 (see above)
- linear OOA(25621, 289, F256, 6, 20) (dual of [(289, 6), 1713, 21]-NRT-code), using
- (u, u+v)-construction [i] based on
(22, 62, 951273)-Net in Base 256 — Upper bound on s
There is no (22, 62, 951274)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 204587 449096 882460 297778 027646 137119 424661 908859 180655 513635 055734 162967 644987 789814 061131 488225 178954 215582 998876 950993 703022 698072 736134 942379 969276 > 25662 [i]