Best Known (16−5, 16, s)-Nets in Base 27
(16−5, 16, 20412)-Net over F27 — Constructive and digital
Digital (11, 16, 20412)-net over F27, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 756)-net over F27, using
- s-reduction based on digital (0, 0, s)-net over F27 with arbitrarily large s, using
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 0, 756)-net over F27 (see above)
- digital (0, 1, 756)-net over F27, using
- s-reduction based on digital (0, 1, s)-net over F27 with arbitrarily large s, using
- digital (0, 1, 756)-net over F27 (see above)
- digital (0, 1, 756)-net over F27 (see above)
- digital (1, 3, 756)-net over F27, using
- s-reduction based on digital (1, 3, 757)-net over F27, using
- digital (5, 10, 756)-net over F27, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 28)-net over F27, using
- s-reduction based on digital (0, 0, s)-net over F27 with arbitrarily large s (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 0, 28)-net over F27 (see above)
- digital (0, 1, 28)-net over F27, using
- s-reduction based on digital (0, 1, s)-net over F27 with arbitrarily large s (see above)
- digital (0, 1, 28)-net over F27 (see above)
- digital (0, 1, 28)-net over F27 (see above)
- digital (0, 2, 28)-net over F27, using
- digital (0, 5, 28)-net over F27, using
- net from sequence [i] based on digital (0, 27)-sequence over F27, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 0 and N(F) ≥ 28, using
- the rational function field F27(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 27)-sequence over F27, using
- digital (0, 0, 28)-net over F27, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 756)-net over F27, using
(16−5, 16, 45243)-Net over F27 — Digital
Digital (11, 16, 45243)-net over F27, using
(16−5, 16, large)-Net in Base 27 — Upper bound on s
There is no (11, 16, large)-net in base 27, because
- 3 times m-reduction [i] would yield (11, 13, large)-net in base 27, but