Best Known (39, 46, s)-Nets in Base 27
(39, 46, 8388600)-Net over F27 — Constructive and digital
Digital (39, 46, 8388600)-net over F27, using
- generalized (u, u+v)-construction [i] based on
- digital (4, 6, 2796200)-net over F27, using
- s-reduction based on digital (4, 6, large)-net over F27, using
- digital (6, 9, 2796200)-net over F27, using
- s-reduction based on digital (6, 9, large)-net over F27, using
- net defined by OOA [i] based on linear OOA(279, large, F27, 3, 3), using
- appending kth column [i] based on linear OOA(279, large, F27, 2, 3), using
- OAs with strength 3, b ≠ 2, and m > 3 are always embeddable [i] based on linear OA(279, large, F27, 3) (dual of [large, large−9, 4]-code), using
- appending kth column [i] based on linear OOA(279, large, F27, 2, 3), using
- net defined by OOA [i] based on linear OOA(279, large, F27, 3, 3), using
- s-reduction based on digital (6, 9, large)-net over F27, using
- digital (24, 31, 2796200)-net over F27, using
- net defined by OOA [i] based on linear OOA(2731, 2796200, F27, 7, 7) (dual of [(2796200, 7), 19573369, 8]-NRT-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(2731, 8388601, F27, 7) (dual of [8388601, 8388570, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(2731, large, F27, 7) (dual of [large, large−31, 8]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 14348908 | 2710−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(2731, large, F27, 7) (dual of [large, large−31, 8]-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(2731, 8388601, F27, 7) (dual of [8388601, 8388570, 8]-code), using
- net defined by OOA [i] based on linear OOA(2731, 2796200, F27, 7, 7) (dual of [(2796200, 7), 19573369, 8]-NRT-code), using
- digital (4, 6, 2796200)-net over F27, using
(39, 46, large)-Net in Base 27 — Constructive
(39, 46, large)-net in base 27, using
- 272 times duplication [i] based on (37, 44, large)-net in base 27, using
- base change [i] based on digital (26, 33, large)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 177147)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 0, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81 (see above)
- digital (0, 1, 177147)-net over F81 (see above)
- digital (2, 4, 177147)-net over F81, using
- s-reduction based on digital (2, 4, 538084)-net over F81, using
- digital (3, 6, 177147)-net over F81, using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(816, 538248, F81, 2, 3) (dual of [(538248, 2), 1076490, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- digital (12, 19, 177147)-net over F81, using
- net defined by OOA [i] based on linear OOA(8119, 177147, F81, 7, 7) (dual of [(177147, 7), 1240010, 8]-NRT-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(8119, 531442, F81, 7) (dual of [531442, 531423, 8]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 531442 | 816−1, defining interval I = [0,3], and minimum distance d ≥ |{−3,−2,…,3}|+1 = 8 (BCH-bound) [i]
- OOA 3-folding and stacking with additional row [i] based on linear OA(8119, 531442, F81, 7) (dual of [531442, 531423, 8]-code), using
- net defined by OOA [i] based on linear OOA(8119, 177147, F81, 7, 7) (dual of [(177147, 7), 1240010, 8]-NRT-code), using
- digital (0, 0, 177147)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- base change [i] based on digital (26, 33, large)-net over F81, using
(39, 46, large)-Net over F27 — Digital
Digital (39, 46, large)-net over F27, using
- t-expansion [i] based on digital (36, 46, large)-net over F27, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(2746, large, F27, 10) (dual of [large, large−46, 11]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 14348906 = 275−1, defining interval I = [0,9], and designed minimum distance d ≥ |I|+1 = 11 [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(2746, large, F27, 10) (dual of [large, large−46, 11]-code), using
(39, 46, large)-Net in Base 27 — Upper bound on s
There is no (39, 46, large)-net in base 27, because
- 5 times m-reduction [i] would yield (39, 41, large)-net in base 27, but