Best Known (60, 60+110, s)-Nets in Base 3
(60, 60+110, 48)-Net over F3 — Constructive and digital
Digital (60, 170, 48)-net over F3, using
- t-expansion [i] based on digital (45, 170, 48)-net over F3, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 45 and N(F) ≥ 48, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
(60, 60+110, 64)-Net over F3 — Digital
Digital (60, 170, 64)-net over F3, using
- t-expansion [i] based on digital (49, 170, 64)-net over F3, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 49 and N(F) ≥ 64, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
(60, 60+110, 237)-Net over F3 — Upper bound on s (digital)
There is no digital (60, 170, 238)-net over F3, because
- 2 times m-reduction [i] would yield digital (60, 168, 238)-net over F3, but
- extracting embedded orthogonal array [i] would yield linear OA(3168, 238, F3, 108) (dual of [238, 70, 109]-code), but
- residual code [i] would yield OA(360, 129, S3, 36), but
- the linear programming bound shows that M ≥ 57674 030952 697132 790443 905720 998593 802640 809223 073416 752042 279335 087414 913152 123006 212511 116738 060878 952363 485233 600133 944111 430235 072053 950893 113002 090729 866223 937816 818055 184289 707085 777963 233597 577169 260803 817190 576368 082652 855612 696795 / 1 339876 932129 028224 408704 392632 336848 871142 578105 667488 443071 923559 155669 234713 329184 080708 239053 777749 932729 763408 916509 224173 666637 726679 049194 921150 683911 451679 235756 206035 536178 033444 365876 501500 383504 368086 > 360 [i]
- residual code [i] would yield OA(360, 129, S3, 36), but
- extracting embedded orthogonal array [i] would yield linear OA(3168, 238, F3, 108) (dual of [238, 70, 109]-code), but
(60, 60+110, 267)-Net in Base 3 — Upper bound on s
There is no (60, 170, 268)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 1436 609290 942301 059529 514232 716663 162930 620641 208256 949310 257619 401738 406167 939281 > 3170 [i]