Best Known (65, 65+116, s)-Nets in Base 3
(65, 65+116, 48)-Net over F3 — Constructive and digital
Digital (65, 181, 48)-net over F3, using
- t-expansion [i] based on digital (45, 181, 48)-net over F3, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 45 and N(F) ≥ 48, using
- net from sequence [i] based on digital (45, 47)-sequence over F3, using
(65, 65+116, 64)-Net over F3 — Digital
Digital (65, 181, 64)-net over F3, using
- t-expansion [i] based on digital (49, 181, 64)-net over F3, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 49 and N(F) ≥ 64, using
- net from sequence [i] based on digital (49, 63)-sequence over F3, using
(65, 65+116, 268)-Net over F3 — Upper bound on s (digital)
There is no digital (65, 181, 269)-net over F3, because
- 2 times m-reduction [i] would yield digital (65, 179, 269)-net over F3, but
- extracting embedded orthogonal array [i] would yield linear OA(3179, 269, F3, 114) (dual of [269, 90, 115]-code), but
- residual code [i] would yield OA(365, 154, S3, 38), but
- the linear programming bound shows that M ≥ 1 273685 117316 854852 422162 829881 832966 447690 895740 309906 310458 926390 612770 978213 152625 280058 194360 835809 193948 098173 493418 855938 340178 030340 236982 362535 160620 195356 689930 627303 105309 656996 895318 798079 562352 143371 450000 / 119464 836862 390494 754395 980869 451414 403013 688642 656571 784804 601227 981155 836283 152743 111860 759413 421370 856862 847247 458782 139408 970000 469220 069762 940707 813640 569299 844570 959855 916781 703653 > 365 [i]
- residual code [i] would yield OA(365, 154, S3, 38), but
- extracting embedded orthogonal array [i] would yield linear OA(3179, 269, F3, 114) (dual of [269, 90, 115]-code), but
(65, 65+116, 287)-Net in Base 3 — Upper bound on s
There is no (65, 181, 288)-net in base 3, because
- 7 times m-reduction [i] would yield (65, 174, 288)-net in base 3, but
- extracting embedded orthogonal array [i] would yield OA(3174, 288, S3, 109), but
- 12 times code embedding in larger space [i] would yield OA(3186, 300, S3, 109), but
- the linear programming bound shows that M ≥ 744 646766 850603 526568 601268 797422 932026 535817 992617 489413 629925 481692 835741 945421 210090 969950 381274 252816 504020 353660 158683 457200 925516 493661 440389 831805 338854 508258 811020 990136 433923 762970 235494 388055 889637 880458 633459 997426 817105 857222 614437 226587 / 10512 885684 310613 723066 595609 767913 116130 406095 478720 857818 594175 294259 025889 504412 156455 324830 169263 105843 888569 812652 562285 873819 443701 107860 316189 843301 339995 > 3186 [i]
- 12 times code embedding in larger space [i] would yield OA(3186, 300, S3, 109), but
- extracting embedded orthogonal array [i] would yield OA(3174, 288, S3, 109), but